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Abstract. Vision Transformer (ViT) architectures traditionally employ
a grid-based approach to tokenization independent of the semantic con-
tent of an image. We propose a modular superpixel tokenization strategy
which decouples tokenization and feature extraction; a shift from con-
temporary approaches where these are treated as an undifferentiated
whole. Using on-line content-aware tokenization and scale- and shape-
invariant positional embeddings, we perform experiments and ablations
that contrast our approach with patch-based tokenization and random-
ized partitions as baselines. We show that our method significantly im-
proves the faithfulness of attributions, gives pixel-level granularity on
zero-shot unsupervised dense prediction tasks, while maintaining predic-
tive performance in classification tasks. Our approach provides a modu-
lar tokenization framework commensurable with standard architectures,
extending the space of ViTs to a larger class of semantically-rich models.

Keywords: ViT · Tokenization · Superpixels · XAI · Saliency

1 Introduction

Vision Transformers [14] (ViTs) have become the cynosure of vision tasks in the
wake of convolutional architectures. In the original transformer for language [12,
42], tokenization serves as a crucial preprocessing step, with the aim of optimally
partitioning data based on a predetermined entropic measure [20, 34]. As models
were adapted to vision, tokenization was simplified to partitioning images into
square patches. This approach proved effective [7, 25, 38, 39, 40, 41], and soon
became canonical; an integral part of the architecture.

Despite apparent successes, we argue that patch-based tokenization has in-
herent limitations. Firstly, the scale of the tokens are rigidly linked to the model
architecture by a fixed patch size, ignoring any redundancy in the original im-
ages. These limitations result in a significant increase in computation for larger
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Fig. 1: Tokenized image and attributions for prediction “grass snake” with different
tokenizers: square patches (ViT), Voronoi tesselation (RViT) and superpixels (SPiT).
We show more results in Appendix D.

resolutions, as complexity and memory scales quadratically with the number
of tokens. Moreover, regular partitioning assumes an inherent uniformity of the
distribution of semantic content while effectively reducing spatial resolution.

Several works have since leveraged attention maps to visualize class token
attributions for interpretability [8, 28], which has been exploited in dense pre-
diction tasks [17]. However, attention maps with square partitions incur a loss
of resolution in the patch representation, and subsequently do not inherently
capture the resolution of the original images. For dense predictions with pixel
level granularity, a separate decoder for upscaling is required [21, 47, 50].

1.1 Motivation

We take a step back from the original ViT architecture to re-evaluate the role
of patch-based tokenization. By focusing on a somewhat overlooked component
in the architecture, we look to establish image partitioning as the role of an
adaptive modular tokenizer ; an untapped potential in ViTs.

In contrast to square partitions, superpixels offer an opportunity to mitigate
the shortcomings of patch-based tokenization by allowing for adaptability in
scale and shape while leveraging inherent redundancies in visual data. Superpix-
els have been shown to align better with semantic structures within images [37],
providing a rationale for their potential utility in vision transformer architec-
tures. We compare the canonical square tokenization in standard ViTs with our
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proposed superpixel tokenized model (SPiT) as well as a control using random
Voronoi tokenization (RViT), selected for being well defined mathematical ob-
jects for tessellating a plane. The three tokenization schemes are illustrated in
Fig. 1, and their innate segmentation capabilities in Fig. 4.

1.2 Contributions

Our research induces three specific inquiries: (a) Is a rigid adherence to square
patches necessary?, (b) What effect does irregular partitioning have on tokenized
representations?, and (c) Can tokenization schemes be designed as a modular
component in vision models? In this work we establish the following;
• Generalized Framework: Superpixel tokenization generalize ViTs in a mod-

ular scheme, providing a richer space of transformers for vision tasks where
the transformer backbone is independent of tokenization framework.

• Efficient Tokenization: We propose an efficient on-line tokenization ap-
proach which provides competitive training and inference times as well as
strong performance in classification tasks.

• Refined Spatial Resolution: Superpixel tokenization provides semantically
aligned tokens with pixel-level granularity. We demonstrate that our method
yields significantly more faithful attributions compared to established explain-
ability methods, as well as strong results in unsupervised segmentation.

• Visual Tokenization: The main contribution of our work is the introduction
of a novel way of thinking about tokenization in ViTs, an overlooked but
central component of the modeling process—cf . discussion in Section 4.

Our primary objective is to evaluate tokenization schemes for ViTs, underscor-
ing the intrinsic properties of alternative tokenization. In the interest of a fair
comparative analysis, we perform our study using vanilla ViT architectures and
established training protocols [36]. Hence, we design experiments to establish
a fair comparison against well-known baselines without architectural optimiza-
tions. This controlled comparison is crucial for attributing observed disparities
specifically to the tokenization strategy, and eliminates confounding factors from
specialized architectures or training regimes.

Notation: We let H×W =
{
(y, x) : 1 ≤ y ≤ h, 1 ≤ x ≤ w

}
denote

the coordinates of an image of spatial dimension (h,w), and let I be an index
set for the mapping i 7→ (y, x). We consider a C-channel image as a signal
ξ : I → RC . We use the vectorization operator vec: Rd1×...×dn → Rd1...dn , and
denote function composition by f(g(x)) = (f ◦ g)(x).

2 Methodology

To evaluate and contrast different tokenization strategies, we require methods
for partitioning images and extracting meaningful features from these partitions.
While these tasks can be performed using a variety of deep architectures, such
approaches add a layer of complexity to the final model, which would invalidate
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Fig. 2: Illustration of
modular tokenization in
ViT architecture.
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Fig. 3: Visualization of superpixel aggregation.

any direct comparison between tokenization strategies. Furthermore, this would
also complicate any meaningful transfer learning between architectures. In line
with this reasoning, we construct an effective heuristic superpixel tokenizer, and
propose an uninvasive feature extraction method which aligns with the canonical
ViT architecture, and facilitates direct comparison.

2.1 Framework

We generalize the canonical ViT architecture by allowing for a modular tok-
enizer and different methods of feature extraction. Note that a canonical ViT is
generally presented as a three-component system with a tokenizer-embedder g,
a backbone f consisting of a sequence of attention blocks, and a subsequent pre-
diction head h. Contrarily, language transformers explicitly decouples g from the
backbone f . Following this lead, we note that we can essentially rewrite a patch
embedding module as a three component modular system, featuring a tokenizer
τ , a feature extractor ϕ, and an embedder γ such that g = γ ◦ ϕ ◦ τ , empha-
sizing that these are inherent components in the original architecture obscured
by a simplified tokenization strategy—cf . Fig 2. This provides a more complete
assessment of the model as a five component feedforward system

Φ(ξ; θ) = (h ◦ f ◦ g)(ξ; θ), (1a)
= (h ◦ f ◦ γ ◦ ϕ ◦ τ)(ξ; θ), (1b)

where θ denotes the set of learnable parameters of the model. In a standard
ViT model, the tokenizer τ acts by partitioning the image into fixed-size square
partitions. This directly provides vectorized features since patches are of uni-
form dimensionality and ordering, hence ϕ = vec in standard ViT architectures.
The embedding γ is typically a learnable linear layer, mapping features to the
embedding dimension of the specific architecture. Alternatively, g can be taken
as a convolution with kernel size and stride equal to the desired patch size ρ.

2.2 Partitioning and Tokenization

Tokenization in language tasks involves partitioning text into optimally infor-
mative tokens, analogous to how superpixels [37] partition spatial data into dis-
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crete connected regions. Hierarchical superpixels [48, 53] are highly parallelizable
graph-based approaches suitable for on-line tokenization. We introduce a novel
method that leverages fully parallel aggregation over batches of image graphs
at each step t, in addition to regularization for size and compactness—cf . Ap-
pendix B. Our method yields a variable number of superpixels at each step,
adapting dynamically to the complexity of an image.

Superpixel Graphs: Let E(0) ⊂ I×I denote the four-way adjacency edges
under H×W . We consider a superpixel as a set S ⊂ I, and we say that S is
connected if for any two pixels p, q ∈ S, there exists a sequence of edges in(
(ij , ij+1) ∈ E(0)

)k−1

j=1
such that i1 = p and ik = q. A set of superpixels form

a partition π of an image if for any two distinct superpixels S, S′ ∈ π, their
intersection S ∩ S′ = ∅, and the union of all superpixels is equal to the set of all
pixel positions in the image, i.e.,

⋃
S∈π(t) S = I.

Let Π(I) ⊂ 22
I

denote the space of all partitions of an image, and con-
sider a sequence of partitions (π(t))Tt=0. We say that a partition π(t) is a re-
finement of another partition π(t+1) if for all superpixels S ∈ π(t) there ex-
ists a superpixel S′ ∈ π(t+1) such that S ⊆ S′, and we write π(t) ⊑ π(t+1).
Our goal is to construct a T -level hierarchical partitioning of the pixel indices
H =

(
π(t) ∈ Π(I) : π(t) ⊑ π(t+1)

)T
t=0

such that each superpixel is connected.
To construct H, the idea is to successively join vertices by parallel edge

contraction to update the partition π(t) 7→ π(t+1). We do this by considering
each level of the hierarchy as a graph G(t) where each vertex v ∈ V (t) is the
index of a superpixel in the partition π(t), and each edge (u, v) ∈ E(t) repre-
sent adjacent superpixels for levels t = 0, . . . , T . The initial image can thus be
represented as a grid graph G(0) = (V (0), E(0)) corresponding to the singleton
partition π(0) =

{
{i} : i ∈ I

}
.

Weight function: To apply the edge contraction, we define an edge weight
functional w(t)

ξ : E(t) → R. We retain self-loops in the graph to constrain regions
by weighting loop edges by relative size. This acts as a regularizer by constrain-
ing the variance of region sizes. For non-loop edges, we use averaged features
µ
(t)
ξ (v) =

∑
i∈π

(t)
v

ξ(i)/|π(t)
v | and apply a similarity function sim: E(t) → R.

Loops are weighted using the empirical mean µ
(t)
|π| and standard deviation σ

(t)
|π|

of region sizes at level t. This gives us weights on the form

wξ(u, v) =


sim
(
µ
(t)
ξ (u), µ

(t)
ξ (v)

)
, for u ̸= v;(

|π(t)
u | − µ

(t)
|π|

)
/σ

(t)
|π|, otherwise.

(2)

Compactness can optionally be regulated by computing the infinity norm density

δ∞(u, v) =
4(|πu|(t) + |πv|(t))

per∞(u, v)2
, (3)
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where per∞ is the perimeter of the bounding box that encapsulates superpixels
u and v. This emphasizes how tightly two neighbouring superpixels u and v are
packed in their bounding box, resulting in a regularized weight functional

w
(t)
ξ (u, v;λ) = λδ∞(u, v) + (1− λ)w

(t)
ξ (u, v) (4)

where λ ∈ [0, 1] serves as a hyperparameter for compactness.

Update rule: We use a greedy parallel update rule for the edge contraction,
such that each superpixel joins with a neighboring superpixel with the highest
edge weights, including self-loops for all G(t) for t ≥ 1. Let N(t)(v) denote the
neighborhood of adjacent vertices of the superpixel with index v at level t. We
construct an intermediate set of edges, given by

Ê(t) =

(
v, argmax

u∈N(t)(v)

wξ(u, v;λ) : v ∈ V (t)

)
. (5)

Then the transitive closure Ê(t)
+ , i.e. the connected components of Ê(t), explicitly

yields a mapping V (t) 7→ V (t+1) such that

π(t+1)
v =

⋃
u∈N̂

(t)
+ (v)

π(t)
u , (6)

where N̂
(t)
+ (v) denotes the connected component of vertex v in Ê

(t)
+ . This update

rule for the partitions ensures that each partition at level (t+ 1) is a connected
region, as it is formed by merging adjacent superpixels with the highest edge
weights. We illustrate the aggregation step in Fig. 3.

Iterative refinement: We repeat the steps of computing aggregation maps,
regularized edge weights, and edge contraction until the desired number of hi-
erarchical levels T is reached. At each level, the partitions become more coarse,
representing larger homogeneous regions in the image. The hierarchical struc-
ture provides a multiscale representation of the image, capturing both local and
global structures. At level T we have obtained a sequence of partitions (π(t))Tt=0,
where each partition at level t is a connected region with π(t) ⊑ π(t+1) for all t.

We conduct experiments to empirically verify the relationship between the
number of tokens produced by varying the steps T and patch size ρ in canonical
ViT tokenizers. Let NSPiT, NViT denote the number of tokens for the SPiT tok-
enizer and ViT tokenizer respectively. Remarkably, we are able to show with a
high degree of confidence that the relationship is E(T | NSPiT = NViT) = log2 ρ,
regardless of image size. Details can be found in Appendix B.

2.3 Feature Extraction with Irregular Patches

While we conjecture the choice of square patches in the ViT architecture to
be motivated by simplicity, it is naturally also a result of the challenge posed



Modular Superpixel Tokenization for ViTs 7

by the alternative. Irregular patches are unaligned, exhibit different shapes and
dimensionality, and are generally non-convex. These factors make the embedding
of irregular patches to a common inner product space nontrivial. In addition to
consistency and uniform dimensionality, we propose a minimal set of properties
any such features would need to capture; color, texture, shape, scale, and position.

Positional Encoding: ViTs generally use a learnable positional embedding
for each patch in the image grid. Noting that this corresponds to a histogram
over positions over a downsampled image (cf . Prop. 1) we can extend learnable
positional embeddings to handle more complex shapes, scales, and positions by
using a kernelized approach. We propose applying a joint histogram over the
coordinates of a superpixel Sn for each of the n = 1, . . . , N partitions. First,
we normalize the positions such that (y′, x′) ∈ [−1, 1]2 for all (y′, x′) ∈ Sn. We
decide on a fixed number of bins β, denoting the dimensionality of our features
in each spatial direction using a Gaussian kernel Kσ such that

ξ̂(pos)n,y,x = vec

( ∑
(yj ,xj)∈Sn

Kσ(y − yj , x− xj)

)
, (7)

typically with low bandwith σ ∈ [0.01, 0.05]. This, in effect, encodes the position
of the patch within the image, as well as its shape and scale.

Color Features: To encode the light intensity information from the raw pixel
data into our features, we interpolate the bounding boxes of each patch to a fixed
resolution of β×β using a bilinear interpolation operator, while masking out the
pixel information in other surrounding patches. These features essentially cap-
ture the raw pixel information of the original patches, but resampled and scaled
to uniform dimensionality. We refer to the feature extractor ϕ as an interpolating
feature extractor. Similar to positional and texture features, the RGB features
are normalized to [−1, 1] and vectorized such that ξ̂(col) ∈ R3β2

.

Texture Features: Gradient operators provides a simple robust method of ex-
tracting texture information [10, 24]. We use the gradient operator proposed by
Scharr [33] due to improved rotational symmetry and discretization errors. We
normalize the operator such that ∇ξ ∈ [−1, 1]H×W×2, where the last dimen-
sions correspond to gradient directions ∇y,∇x. Mirroring the procedure for the
positional features, we then construct a joint histogram with a Gaussian kernel
over the gradients within each superpixel Sn such that ξ̂

(grad)
n ∈ Rβ2

.
The feature modalities are concatenated as ξ̂n = [ξ̂

(col)
n , ξ̂

(pos)
n , ξ̂

(grad)
n ] ∈ R5β2

.
While our proposed gradient features are commensurable with the canonical
ViT architecture, they represent an additional dimension of information. We
therefore ablate the effect of including or omitting gradient features. For models
where these features are omitted, i.e. ξ̂n \ ξ̂(grad)n = [ξ̂

(col)
n , ξ̂

(pos)
n ] ∈ R4β2

, we say
that the extractor ϕ is gradient excluding.
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Table 1: Accuracy (Top 1) for Base (B) capacity models on classification.
Model INReaL IN1k Caltech256 Cifar100

Name Grad. Im./s.‡ Lin. kNN Lin. kNN Lin. kNN Lin. kNN

ViT-B16 ✗ 793.04 0.853 0.849 0.802 0.737 0.879 0.879 0.892 0.897
ViT-B16 ✓ 721.12 0.854 0.844 0.805 0.748 0.889 0.885 0.899 0.899
RViT-B16† ✗ 619.86 0.843 0.832 0.788 0.718 0.873 0.882 0.894 0.838
RViT-B16† ✓ 585.64 0.841 0.836 0.789 0.725 0.864 0.861 0.888 0.762
SPiT-B16 ✗ 690.72 0.793 0.818 0.760 0.569 0.833 0.829 0.813 0.634
SPiT-B16 ✓ 640.59 0.858 0.853 0.804 0.752 0.888 0.891 0.884 0.845
†Uncertainty measures for RViT are detailed in Appendix Table G.1.
‡Median throughput over full training with 4× MI250X GPUs using float32 precision.

2.4 Generalization of Canonical ViT

By design, our framework acts as a generalization of the canonical ViT tokeniza-
tion, and is equivalent to applying an canonical patch embedder using a fixed
patch size ρ with interpolated gradient excluding feature extraction.

Proposition 1 (Embedding Equivalence). Let τ∗ denote an canonical ViT
tokenizer with a fixed patch size ρ, let ϕ denote a gradient excluding interpolated
feature extractor, and let γ∗, γ denote embedding layers with equivalent linear
projections L∗

θ = Lθ. Let ξ̂(pos) ∈ RN×β2

denote a matrix of joint histogram
positional embeddings under the partitioning induced by τ∗. Then for dimensions
H = W = β2 = ρ2, the embeddings given by γ ◦ ϕ ◦ τ∗ are equivalent to the
canonical ViT embeddings given by γ∗ ◦ ϕ∗ ◦ τ∗ up to proportionality.

We provide necessary definitions and proofs for Prop. 1 in Appendix A,
demonstrating that our proposed framework includes the canonical ViT archi-
tecture as a special case; an essential property for modularity.

3 Experiments and Results

We train ViTs with different tokenization strategies (ViT, RViT, SPiT) using
base (B) and small (S) capacities on a general purpose classification task on
ImageNet [11] (IN1k). We design our experiments with the goal of evaluating
the quality of the resulting tokenized representations of the images. See details
about the training setup in Appendix C.

3.1 Classification

We evaluate the models by fine-tuning on Cifar100 [22] and Caltech256 [16],
in addition to validation using the INReaL labels [4], ablating the effect of
gradient features. We also evaluate our models by replacing the linear classifier
head with a k-nearest neighbours (kNN) classifier over the representation space
of different models, focusing solely on the clustering quality of the class tokens in
the embedded space [8, 28]. Table 1 gives an overview of the results. We include
results for the Small (S) capacity models in Table C.1.
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Our results show that ViTs with superpixel tokenization can be effectively
trained for classification tasks. For models with gradient texture features, super-
pixel tokenization performs comparably to square partitioning, noting that su-
perpixel tokenization with gradient excluding feature extraction underperforms.
We conjecture that this is likely due to high irregularity in regions, and confirms
our conjecture that gradient features can compensate for loss of information from
interpolation. Our findings in Section 2.4 also supports this.

When comparing validation results, we note that SPiT performs better than
the ViT over INReaL. This indicates that the model is more robust to label
noise or localized-multiclass tasks, and likely generalizes better in real-world
scenarios. This is further evident by the fact that SPiT performs better with
kNN classification for higher resolution images in IN1k and CalTech256 than
the ViT model. We note that square tokens perform better on Cifar100. This is
to be expected as quantization artifacts from low resolution images persist under
upscaling, favoring square patches.

Overall, our results indicates that SPiT with gradient features outperforms
the vanilla ViT in classification tasks. However, when including our proposed
gradient features in the standard ViT, the results are not significant enough to
claim a clear benefit on general purpose classification tasks. We emphasize that
comparable performance is a positive result, since our focus is on demonstrating
the feasibility of modular superpixel tokenization as a new research direction for
vision transformers. For more details, see Appendix G.

3.2 Evaluating Tokenized Representations

To evaluate the cohesive quality of the tokenized representations, we look to
quantify the faithfulness of attributions, and the model’s performance on zero-
shot unsupervised segmentation. These were selected to give insight into the
embedded context of the tokenized representation of the image.

Faithfulness of Attributions: One of the attractive properties of ViTs is the
inherent interpretability provided by their attention mechanisms. Techniques
such as attention rollout [8, 14], attention flow [1], and PCA projections [28] have
been leveraged to visualize the reasoning behind the model’s decisions. Unlike
gradient-based attributions, which often lack clear causal links to model predic-
tions [3], attention based attributions are intrinsically connected to the flow of
information in the model, and provide direct insight into the decision-making
process in an interpretable manner. They are, however, constrained by the gran-
ularity and semantic alignment of the original tokenization scheme. Classical
methods such as LIME [30] provides a well-established counterfactual frame-
work for post-hoc explainability with superpixel partitions using Quickshift [43]
or SLIC [2] with local linear surrogate models.

To quantify the faithfulness of interpretations under different tokenization
strategies, we compute the attention flow of the model in addition to PCA pro-
jected features and contrast this with attributions from LIME with indepen-
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Table 2: Faithfulness of Attributions, w. CI (95%).
ViT-B16 (IN1k) RViT-B16 (IN1k) SPiT-B16 (IN1k)

Comp ↑ Suff ↓ Comp ↑ Suff ↓ Comp ↑ Suff ↓

LIME/SLIC 0.244 ± 0.004 0.543 ± 0.006 0.236 ± 0.004 0.591 ± 0.007 0.244 ± 0.005 0.520 ± 0.006
Att.Flow 0.160 ± 0.004 0.664 ± 0.006 0.223 ± 0.005 0.685 ± 0.007 0.259 ± 0.006 0.558 ± 0.006
Prot.PCA 0.206 ± 0.005 0.710 ± 0.006 0.209 ± 0.005 0.691 ± 0.007 0.256 ± 0.005 0.592 ± 0.006
Color coding: baseline, weaker than baseline, stronger than baseline.

Table 3: Results for unsupervised salient segmentation with TokenCut. Models using
additional postprocessing are included for completeness are colored in gray.

ECSSD DUTS DUT-OMRON

Model Postproc. maxFβ IoU Acc. maxFβ IoU Acc. maxFβ IoU Acc.

DINO-B14† ✓ 0.874 0.772 0.934 0.755 0.624 0.914 0.697 0.618 0.897
DINO-B14† ✗ 0.803 0.712 0.918 0.672 0.576 0.903 0.600 0.533 0.880
SPiT-B16 ✗ 0.903 0.773 0.934 0.771 0.639 0.894 0.711 0.564 0.868
†As reported by Wang et al. [47].

dently computed SLIC superpixels, and measure faithfulness using comprehen-
siveness (Comp) and sufficiency (Suff) [13]. These metrics have been shown to
be the two strongest quantitative measures of attributions for transformers [9].
See Appendix D for details.

The results in Table 2 suggests that predictions extracted from the attention
flow and PCA using the SPiT model provide better comprehensiveness scores
than interpretations from LIME, indicating that SPiT models produce attribu-
tions that more effectively exclude irrelevant regions of the image. A one-sided
t-test confirms that the improvement in comprehensiveness between Att.Flow
and LIME for the SPiT model is statistically significant.4 Contrarily, our re-
sults show that interpretations extracted from the ViT and RViT models are
less faithful to the predictions than interpretations procured with LIME. Fur-
thermore, we note that the sufficiency score for SPiT models are closer to the
baseline LIME interpretations than what we observe for the ViT, indicating that
the interpretations from SPiT model captures the most essential features better
than a canonical ViT. Figs. 1, D.1, D.2, D.4, and D.5 shows that the granularity
of superpixel tokens provide interpretations that closely align with the semantic
content of the image.

Unsupervised Segmentation: Superpixels have historically been applied in
dense prediction tasks such as segmentation and object detection [23, 51] as
a lower-dimensional prior for dense prediction tasks. To evaluate our tokens,
we are particularly interested in tasks for which the outputs of the pre-trained
model can be leveraged directly, without the addition of a downstream decoder.
Wang et al. [47] propose an unsupervised methodology for extracting salient
segmentation maps for any transformer model using normalized graph cut [35].
4 One-sided t-test (Att.Flow > LIME): (t = 6.54, p < 10−10, df = 49664).
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True positives False positives False negatives

Fig. 4: Non-cherry picked samples ({0257..0264}.jpg) of unsupervised zero-shot seg-
mentation results on ECSSD.

We conduct experiments extending this well-established method to showcase
preliminary out-of-the-box capabilities on dense prediction tasks, with details of
the experimental setup in Appendix E.

Table 3 shows results for the ECSSD [52], DUTS [44] and DUT-OMRON [54]
datasets, and demonstrates that SPiT compares favorably to DINO [8] under the
TokenCut framework, notably without any form of postprocessing. The results in-
dicate that our tokenizer has strong semantic alignment with image content, and
that our proposed framework is capable of dense predictions without learnable
tokenization. We use the same metrics as the original TokenCut framework; for
maxFβ we set β = 1/3 and take the maximum F -score over 255 uniformly
sampled thresholds. A series of non-cherry picked results are featured in Fig. 4.

3.3 Ablations

Tokenizer Generalization: In in Section 2.4 we showed that our framework
generalizes the canonical ViT. This allows us to contrast different tokenization
strategies across models by directly swapping tokenizers, emphasizing the mod-
ularity of our framework. We report the relative change in accuracy (∆ Acc.) of
models when swapping tokenizers in Table 4.

Our results show that ViTs with square tokenization performs poorly when
evaluated on irregular patches. We observe an increase in accuracy for RViT
models when evaluated over square patches. Furthermore, we see that the SPiT
models also generalize well to both to square and Voronoi tokens, but is highly
dependent on the gradient features. With gradient features, we note a minor drop
in accuracy when evaluating Voronoi tokens with SPiT, and superpixel tokens
with RViT. This supports our conjecture that gradient features help encode
texture information for irregular patches.
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Table 4: Tokenizer Generalization.
∆ Acc. ↑ (IN1k)

Model Grad. ViT RViT SPiT

ViT-B16 ✗ 0.000 −0.551 −0.801
ViT-B16 ✓ 0.000 −0.494 −0.798
RViT-B16 ✗ 0.006 0.000 −0.593
RViT-B16 ✓ 0.003 0.000 −0.163
SPiT-B16 ✗ −0.407 −0.464 0.000
SPiT-B16 ✓ −0.200 −0.063 0.000

Table 5: Superpixel Evaluation.
BSDS500 SBD Time

R2↑ |π| ↓ R2↑ |π| ↓ s/Im. ↓

ETPS† 0.924 651.0 0.955 648.1 0.3268
SEEDS† 0.901 670.6 0.944 644.9 0.4501
SLIC† 0.847 575.3 0.897 592.2 0.0729
Watershed† 0.803 608.1 0.871 641.1 0.0038
SPiT 0.914 595.0 0.948 570.2 0.0047
†As reported by Stutz et al. [37].

Source Feature Correspondences

Fig. 5: Feature correspondences from a source image (left) to target images (right),
mapped via normalized single head cross attention and colored using low rank PCA.
We show more results in Appendix F.

Quality of Superpixels To evaluate the quality of superpixels, we compute
the explained variation [27, 37] given by

R2(π | ξ)= 1

Var(ξ)

∑
S∈π

Pr(S)
(
E(ξ ∩ S)− E(ξ)

)2
, (8)

where Pr(S) = |S|/|ξ|. The explained variation quantifies how well the super-
pixels capture the inherent structures in an image by measuring the amount of
dispersion which can be attributed to the partitioning π. An ideal algorithm
would produce a high R2 with a minimal number of superpixels. We compare
our approach with SotA superpixel methods [37] in Table 5, demonstrating that
our superpixel algorithm performs comparably to top performing methods with
substantially lower inference time, which is crucial for on-line tokenization.

Feature Correspondences Oquab et al. [28] visualize feature correspondences
between images to examine the consistency of token representations across im-
ages for models trained with contrastive learning. Given the strong attribution
scores of superpixel tokenization, we were interested to see how features cor-
respond across images with similar, but not necessarily identical classes. We
compute cross attention over normalized features between a source and target
images, and visualize the correspondences using a low rank PCA with three
channels. Figs. 5, F.1, and F.2 demonstrates that the features from SPiT pro-
vide strong feature correspondence properties without self-supervised pretrain-
ing, which is generally considered to provide more robust representations inde-
pendent of downstream tasks.
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Fig. 6: Taxonomy of adaptive tokenization in transformers. Tokenization ranges from
decoupled (�) to coupled (�) to the transformer architecture, and from coarse (ò) to
fine (ó) token granularity. To contextualize vision models (4) with LLMs (_), GPT-
3 [6] is included for reference.

4 Discussion and Related Work

Related Work Interest in adaptive tokenization is burgeoning in the field. We
propose a taxonomy of adaptive tokenization with two main dimensions illus-
trated in Fig. 6. The first dimension illustrates the coupling or integration of
tokenization into the transformer architecture. Several approaches [5, 19, 26]
are inherently coupled to the architecture, while others adopt a decoupled ap-
proach [18, 31] which more closely aligns with our framework. The taxonomy
is extended by a dimension of token granularity, measuring the proximity to
modelling with pixel-level precision. Together, these dimensions facilitate an un-
derstanding of adaptive tokenization approaches for ViTs.

A significant body of current research is primarily designed to improve scaling
and overall compute for attention [5, 32, 55] by leveraging token merging strate-
gies in the transformer layers with square patches, and can as such be considered
low-granularity coupled approaches. Distinctively, SuperToken [19] applies a cou-
pled approach to extract a non-uniform token representation. The approach is
fundamentally patch based, and does not aim for pixel-level granularity.

In contrast, multi-scale tokenization [18, 31] apply a decoupled approach
where the tokenizer is independent of the transformer architecture. These are
commensurable with any transformer backbone, and improve computational over-
head. While square tokens operate on a lower level of granularity, there is signif-
icant potential for synergy between these approaches and our own, particularly
given the hierarchical nature of SPiT. On the periphery, Ma et al. [26] propose
a pixel-level clustering method with a coupled high granularity approach.

Limitations Our proposed framework is not optimizable with gradient based
methods. Ideally, adaptable tokenization should be learnable in an end-to-end
framework. However, such an approach needs to be carefully designed to not
add undue computational overhead, and should ideally not be limited by a pre-
defined number of tokens. Moreover, we see that irregular tokenization require
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additional gradient features to perform. While our framework provides com-
petitive performance, it should be seen as an early step towards more flexible
tokenization strategies, with several opportunities for further optimization. We
provide visualization of edge cases for attributions in Fig. D.3.

Further Work Our work is distinguishable as a decoupled high-granularity
apprach with multiple paths for further work. We see strong potential in explor-
ing graph neural networks (GNNs) for tokenization, and hierarchical properties
could be leveraged in self-supervised frameworks such as DINO [8], or pyramid
models [45, 46] in a coupled approach. The modularity of our framework pro-
vides opportunites for research into the dynamic between ViTs and tokenization.
Coupling SPiT with gating [18] or merging [5] could further improve scalability,
and allow for a learnable framework. More work can be done in studying the
effects of irregularity in feature extraction, as discussed in Section 3.3.

5 Conclusion

In this work, we posit tokenization as a modular component that generalize the
canonical ViT backbone, and show that irregular tokenization with superpixels
is commensurable with transformer architectures. Our experiments demonstrate
that superpixel tokens have a significant impact on extracted attributions for
predictions, and are amenable to unsupervised segmentation tasks without a
separate decoder model. Moreover, we show that concatenated gradient features
improve performance of base capacity ViTs, and that irregular tokenizers gener-
alize between different tokenization strategies. Our experiments were performed
with standard models and training to limit confounding factors in our results.
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A Equivalence of Frameworks

Definition 1 (ViT Tokenization). Let ξ : H×W → RC be an image signal
with tensor representation ξ ∈ RH×W×C . The canonical ViT tokenization op-
erator τ∗ : RH×W×C → RN×ρ×ρ×C partitions the image into N = ⌈H

ρ ⌉ · ⌈
W
ρ ⌉

non-overlapping C-channel square zero-padded patches. For the case where we
have H mod ρ = W mod ρ = 0, we get N = H

ρ · Wρ , and no padding is necessary.

Definition 2 (ViT Features). Let ρ denote the patch dimension of a canon-
ical ViT tokenizer τ∗, and let M = ρ2C. The canonical ViT feature extractor
ϕ∗ : RN×ρ×ρ×C → RN×M is given by ϕ∗ = vecM , where vecM denotes the vec-
torization operator applied to each of the N patches via ρ×ρ×C 7→ M .

Definition 3 (ViT Embedder). Let ϕ∗ be a canonical ViT feature extractor,
and let Q ∈ RN×D denote a positional encoding. The canonical ViT embedder
γ∗ : RN×M → RN×D is given by

γ∗(z) = Lθz +Q

where Lθ : RN×M → RN×D is a learnable linear transformation, and Q is either
a learnable set of parameters or a function of the positions of the N blocks in
the partitioning induced by the canonical tokenizer τ∗.

Lemma 1 (Feature Equivalence). Let τ∗ denote a canonical ViT tokenizer
with a fixed patch size ρ, and let ϕ denote a gradient excluding interpolating
feature extractor with β = ρ. Then the operations ϕ ◦ τ∗ are equivalent to the
canonical ViT operations ϕ∗ ◦ τ∗.

Proof. The proof is highly trivial but illustrative. Note that for each of the N
square patches generated by τ , the extractor ϕ performs an interpolation to
rescale the patch to a fixed resolution of β×β. However, for β = ρ the patches
already match the target dimensions exactly. It follows that the interpolation
operation reduces to identity. The vectorization operator is equivalent for both
mappings, hence ϕ = vecN = ϕ∗.

Proposition 1 (Embedding Equivalence). Let τ∗ denote an canonical ViT
tokenizer with a fixed patch size ρ, let ϕ denote a gradient excluding interpolated
feature extractor, and let γ∗, γ denote embedding layers with equivalent linear
projections L∗

θ = Lθ. Let ξ̂(pos) ∈ RN×β2

denote a matrix of joint histogram
positional embeddings under the partitioning induced by τ∗. Then for dimensions
H = W = β2 = ρ2, the embeddings given by γ ◦ ϕ ◦ τ∗ are equivalent to the
canonical ViT embeddings given by γ∗ ◦ ϕ∗ ◦ τ∗ up to proportionality.

Proof. We first note that we can assume ξ̂(pos) is a matrix with single entry
components, since under β = ρ and N = β2, each vectorized histogram feature
is a scaled unit vector cnen with n = 1, . . . , N . Moreover, since the partitioning
inferred by τ∗ exhaustively covers the spatial dimensions H×W , the histograms
essentially span the standard basis, such that ξ̂(pos) is diagonal. Furthermore,
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since each patch is of the same size we have equal contribution towards each
entry, such that cn = cm for all m ̸= n. Therefore, without loss of generality,
we can ignore the scalars and simply consider ξ̂(pos) = I as an identity matrix.
From Lemma 1 we have that z = (ϕ∗ ◦ τ∗)(ξ) = (ϕ ◦ τ∗)(ξ). Then, since

γ∗(z) = Lθz +Q = [Lθ, Q]

[
z

I

]
= γ(z) (9)

we have that γ = γ∗ up to proportionality for some constant c = cn.

Remark 1. While we only demonstrate the equality up to proportionality, this
can generally be ignored since we can effectively choose our linear projection un-
der γ to be Lθ/c. We note that while the equality holds for empirical histograms,
equality does not strictly hold for ξ̂(pos) computed using KDE with a Gaussian
kernel, however we point out that the contribution from the tails of a kernel Kσ

with a small bandwidth is effectively negligible.

B Preprocessing and Superpixel Features

Compared to standard preprocessing, we use a modified normalization scheme
for the features for improving the superpixel extraction. We apply a combined
contrast adjustment and normalization function using a reparametrized version
of the Kumaraswamy CDF. which is computationally efficient and allows more
fine-grained control of the distribution of intensities than empirical normaliza-
tion, which improves the superpixel partitioning.

The normalization uses a set of means µ shape parameters λ for normalizing
the image and adjusting the contrast. The normalization is given by(

1−
(
1− xλ

)b)
, (10)

where b is defined by

b = − ln(2)

ln (1− µλ)
, (11)

and we set means µr = 0.485, µg = 0.456, µb = 0.406 and λr = 0.539, λg =
0.507, λb = 0.404, respectively.

The features used for the superpixel extraction are further processed us-
ing anisotropic diffusion, which smoothes homogeneous regions while avoiding
blurring of edges. This technique was advocated for superpixel segmentation by
Xiaohan et al. [49]. We use the algorithm proposed by Perona and Malik [29]
over 4 iterations, with κ = 0.1 and γ = 0.5. Note that these features are only
applied for constructing the superpixels in the tokenizer. We emphasize that we
do not apply anisotropic diffusion for the features in the predictive model.
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Table B.1: Expected no. superpixels with SPiT over IN1k (train, CI 95%).
Im.Size E(|π(1)|) E(|π(2)|) E(|π(3)|) E(|π(4)|)

224 11 940.278 ± 2.848 3155.512 ± 0.808 794.650 ± 0.209 197.411 ± 0.052
256 15 496.020 ± 3.786 4097.510 ± 1.074 1031.727 ± 0.277 256.051 ± 0.071
384 34 084.297 ± 9.188 9047.289 ± 2.586 2287.822 ± 0.669 567.690 ± 0.172
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Fig. B.1: Expected no. superpixels with SPiT compared with no. ViT patches.

Number of Superpixels: In Section 2.2, we mention that SPiT gives compa-
rable numbers of partitions to a ViT with different patch sizes. Table B.1 shows
empirical results for superpixel sizes using the SPiT tokenizer over the training
images of ImageNet1k, and Fig. B.1 compares the results to number of patches
with canonical ViT tokenization, demonstrating the validity of our claims.

Importantly, these results also reveal much about effective inference times.
In Table 5, we show that the overhead for constructing the superpixels is very
low. However, the number of tokens depends on the image. Images with large
homogeneous regions will be processed faster, while images with many indepen-
dent regions will necessary incur a cost. Nevertheless, the results in Table B.1
show that we will, on average, have comparable inference times to a canonical
ViT due to the beneficial properties of our proposed superpixel tokenization.

Final Thresholding : Adaptable tokenization frameworks does not necessarily
entail an overall drop in inference throughput. Contrarily, it could potentially
be leveraged to substantially improve inference speed by designing learnable
methods to lower the number of tokens without decreasing performance, e.g .
ToMe by Bolya et al. [5].

We apply an additional final merging step where we compute the euclidean
distance between adjacent superpixels and merge all superpixels below a given
threshold for our SPiT-B16 model with gradient features. Noting that a thresh-
old of 0.0 retains the original model design, the results in Table B.2 indicate
that models with superpixel tokenization can be optimized to improve inference
throughput. We also note that taking the maximum performing tokens over all
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Table B.2: Accuracy under final thresholding.
Threshold No.Tok. Im./s. Avg.Acc.

0.00 556.5 718.7 0.804
0.05 513.2 749.2 0.804
0.10 441.6 844.4 0.802
0.15 365.0 950.5 0.797
0.20 293.7 1038.9 0.786

thresholds achieves an accuracy of 0.817, significantly improving the predictive
performance.

C Training Details

As mentioned in Section 1.2, we use standardized ViT architectures and gen-
erally follow the recommendations provided by Steiner et al. [36]. We provide
training logs, pre-trained models, and code for training models from scratch in
our GitHub project repository (in the camera ready manuscript).

Classification: Training is performed over 300 epochs using the AdamW op-
timizer with a cosine annealing learning rate scheduler with 5 epochs of cosine
annealed warmup from learning rate ηstart = 1×10−5. The schedule maxima
and minima are given by ηmax = 3×10−3, and ηmin = 1×10−6. We use a weight
decay of λdec = 2×10−2 and set the smoothing term ϵ = 1×10−7. In addition,
we used stochastic depth dropout with a base probability of p = 0.2 and layer
scaling. Models were pre-trained with spatial resolution 256×256.

For augmentations, we randomly select between using the RandAug frame-
work at medium strength or using Aug3 framework by Touvron et al. [39] in-
cluding CutMix [56] with parameter α = 1.0. We use RandomResizeCrop
using the standard scale (0.08, 1.0) with randomly sampled interpolation modes.
Since the number of partitions from the superpixel tokenizer are adapted on an
image-to-image basis, we effectively constrain the maximum number of tokens
during training using token dropout to balance number of tokens.

We found that a naive on-line computation of Voronoi tessellations was un-
necessarily computationally expensive, hence we precompute sets of random
Voronoi tessellations with 196, 256, and 576 partitions, corresponding to im-
ages of 224×224, 256×256, and 384×384 resolutions given patch size ρ = 16.

All training was performed on AMD MI250X GPUs. One important distinc-
tion is that we do not use quantization with bfloat16 for training our models,
instead opting for the higher 32-bit precision of float32 since this improves
consistency between vendor frameworks. Inference was carried out on a mixture
of NVIDIA A100, RTX 2080Ti, Quadro P6000, and AMD MI250X to validate
consistency across vendor frameworks.
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Table C.1: Accuracy (Top 1) for Small (S) capacity models on classification. Note
that the Small capacity models have been trained without final finetuning.

Model INReaL IN1k Caltech256 Cifar100

Name Grad. Lin. kNN Lin. kNN Lin. kNN Lin. kNN

ViT-S16 ✗ 0.778 0.808 0.765 0.692 0.818 0.827 0.827 0.833
ViT-S16 ✓ 0.782 0.811 0.754 0.682 0.824 0.832 0.830 0.836
RViT-S16 ✗ 0.829 0.814 0.767 0.740 0.852 0.858 0.856 0.858
RViT-S16 ✓ 0.818 0.812 0.759 0.741 0.856 0.861 0.856 0.859
SPiT-S16 ✗ 0.746 0.796 0.689 0.628 0.767 0.771 0.761 0.769
SPiT-S16 ✓ 0.819 0.812 0.750 0.736 0.849 0.851 0.832 0.839
†Uncertainty measures for RViT tokenizer are detailed in Appendix Table G.1.

Fine Tuning: All base models were fine-tuned over 30 epochs with increased
degrees of regularization. We increase the level of RandAug to “strong” using
2 operations with magnitude 20. Additionally, we increase the stochastic depth
dropout to p = 0.4. Fine tuning was performed with spatial resolution 384×384,
and we reduce the maximum learning rate to ηmax = 1×10−4. For the alternative
classification datasets Cifar100 and Caltech256, fine tuning was performed
by replacing the classification head and fine tuning for 10 epochs using AdamW
with learning rate η = 1×10−4 and the same weight decay. No augmentation
was used in this process, and images were re-scaled to 256×256 for training and
evaluation.

D Interpretability and Attention Maps

For LIME explanations, we train a linear surrogate model LΦ for predicting
the output probabilities for the prediction of each model Φ. To encourage inde-
pendence between tokenizers and LIME explanations, as well as promote direct
comparability, we use SLIC with a target of |π| ≈ 64 superpixels. We use Monte
Carlo sampling of binary features for indicating the presence or omission of each
superpixel with stochastic p ∈ Uniform(0.1, 0.3), and keep these consistent across
model evaluations. We observed that certain images in the IN1k at times pro-
duced less than 5 superpixels using SLIC, hence these images were dropped from
the evaluation.

The attention flow [1] of a transformer differs from the standard attention
roll-out by accounting for the contributions of the residual connections in com-
putations. The attention flow of an ℓ-layer transformer is given by

AFlow =

ℓ∏
i=1

(
(1− λ)I + λAi

)
. (12)

where we set λ = 0.9 to account for stochastic depth and layer scaling factors
while accentuating the contribution of the attention operators. We use max-
aggregation over the heads to extract a unified representation. Following Doso-
vitskiy et al. [14] and Caron et al. [8], we extract the attention for the class token
as an interpretation of the model’s prediction.
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For the PCA projection, we take inspiration from the visualizations technique
used in the work of Oquab et al. [28]. In this work, the features of multiple images
with comparable attributes are concatenated, and projected onto a set of the top
principal components of the image. We compute a set of 5 prototype centroids
ν ∈ R1000×d×5 for each class token of each model over ImageNet using KMeans,
while enforcing relative subclass orthogonality by introducing a regularization
term

J(ν) =
λν

1000

1000∑
c=1

∥I − ν⊺c νc∥22, (13)

selecting λν = 0.1. Given a prediction c, we concatenate the prototypes to
the token embeddings to form a matrix M = [Φ(ξ; θ)⊺, ν⊺c ]

⊺. Letting UΣV ⊺ =
M−µ(M) be a low-rank SVD of the centered features, we then project the orig-
inal features to the principal components by Φ(ξ; θ)V , and use max-aggregation
to extract the attribution as an interpretation of the model’s prediction. We
experimented with different ranks, but found that simply using the first prin-
cipal component aligned well with attention maps and LIME coefficients. This
somewhat mirrors the procedure by Oquab et al. [28], where a thresholded pro-
jection on the first principal component is applied as a mask. In the interest of
reproducibility, we provide links for downloading normalized attention maps for
all attributions in our GitHub repository.

To quantify the faithfulness of the attributions for each model, we used com-
prehensiveness and sufficiency as proposed by DeYoung et al. [13]. Given a se-
quence of quantiles Q ∈ [0, 1] from an attribution, these metrics are given by

CompQ|x,Φ =
1

|Q|
∑
q∈Q

(
Φ(x; θ)− Φ(x \ x>q; θ)

)
, (14)

SuffQ|x,Φ =
1

|Q|
∑
q∈Q

(
Φ(x; θ)− Φ(x \ x≤q; θ)

)
. (15)

The benefit of these metrics is that they are symmetrical, and invariant to the
scaling of the attributions due to using quantiles to produce the masks. Fol-
lowing the procedure outlined by DeYoung et al. [13] we set the quantiles to
Q = (0.01, 0.05, 0.2, 0.5). Figs. D.1 and D.2 show additional attributions, while
Figs. D.4 and D.5 illustrate the occlusions with the selected quantiles. While
we show that SPiT produces strong attributions, the proposed method is by no
means free of failure cases. We find it informative to also include visualizations
of the limiting edge cases for attributions in Fig. D.3.

E Unsupervised Salient Segmentation Details

The TokenCut [47] framework proposes to use a normalized cut [35] over the key
features without class tokens in the last self-attention layer of the network. A
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Table E.1: Extended unsupervised salient segmentation results. Models including ex-
tensive decoders and postprocessing are colored in gray.

ECSSD DUTS DUT-OMRON

Model Method Postproc. maxFβ IoU Acc. maxFβ IoU Acc. maxFβ IoU Acc.

DINO-B14† TokenCut BL 0.874 0.772 0.934 0.755 0.624 0.914 0.697 0.618 0.897
DINO-S8 SelfMask MF 0.894 0.779 0.943 0.789 0.648 0.938 0.733 0.609 0.923
DINO-S8 SelfMask MF+BL 0.911 0.803 0.951 0.819 0.694 0.949 0.774 0.677 0.939
DINO-S8 MOVE Seg+MF 0.921 0.835 0.956 0.829 0.728 0.954 0.756 0.666 0.933
DINO-S8 MOVE Seg+MF+BL 0.917 0.800 0.952 0.827 0.687 0.952 0.766 0.665 0.937
DINO-B14† TokenCut ✗ 0.803 0.712 0.918 0.672 0.576 0.903 0.600 0.533 0.880
SPiT-B16 TokenCut ✗ 0.903 0.773 0.934 0.771 0.639 0.894 0.711 0.564 0.868
†As reported by Wang et al. [47].

soft adjacency ATC is computed using cosine similarities, which are thresholded
using a small threshold τTC = 1/3 to estimate adjacency over the complete
graph over token features. The normalized cut is performed by extracting the
Fiedler vector; the second smallest eigenvector of the graph Laplacian, and gives
a bipartition of the graph into foreground and background elements. The original
paper [47] uses DINO [8] as a pre-trained base model.

We found that extracting the key tokens from the last self-attention operator
in the network is less effective than simply using the final features for the SPiT
framework. In TokenCut, the saliency map is refined using postprocessing with
a bilateral solver, however, in the SPiT framework this step is clearly redundant.
Instead, we simply standardize the Fiedler vector using its mean and standard
deviation, and map the result on the segmentations from the SPiT tokenizer.
For certain images, the foreground and background elements could be swapped
under the standard unsupervised normalized cut method. From our experiments
on interpretability, we found that simply taking the class token for the full image,
and comparing it using cosine similarity to class tokens (produced given the
saliency mask) will accurately provide a robust estimate of which element is the
foreground and the background.

F Feature Correspondences

The work by Caron et al. [8] and Oquab et al. [28] established certain emer-
gent properties in self-supervised models, where the tokenized features of ViT
trained with self-supervised methods provide inherent interpretability and inter-
image feature correspondence. Given our results on feature attributions from
Section 3.2, we perform experiments to visualize feature correspondences to see
if similar emergent properties can be observed from supervised training with
superpixel tokenization.

Method: A sequence of support images (ξn)
N
n=1 are selected, with labels such

that yn ̸= ym for all 1 ≤ m,n ≤ N , as a set of features to search from. Fur-
thermore, these images are selected such that the WordNet [15] hypernym of
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the labels are the same, e.g ., ‘dog’ in Fig. F.1. We compute the normalized
superpixel token features

(
zn : zn = Φ(ξn)/∥Φ(ξn)∥

)N
n=1

where Φ is our SPiT-
B16 model with gradient including feature extraction. We omit the class tokens,
and compute correspondences via cross-attention for each pair A×

mn = σ(zmz⊺n)
where σ is the softmax with a temperature of 0.01. For visualizing the high-
dimensional features, we compute a three component PCA to produce pseudo-
colors cn = PC3(zn) ∈ R3×k for zn ∈ Rk×d, where PC3(·) extracts the first 3
principal components. These are normalized to [0, 1], and mapped to RGB chan-
nels directly in the respective order.5 The idea is to visualize the correspondences
using PCA pseudocolors from the source image mapped to a target image. The
principal components are thresholded using normalized cut, cf . Section E, and
the feature correspondences are computed via

cm→n = (A×
mn)

⊺cm, (16)

such that cm→n are the projected feature correspondences from the cross atten-
tion A×

mn over the full feature space using pseudocolors from the source image m
into the target image n. In other words, for each superpixel in the target image,
we mix the pseudocolors of the corresponding superpixels in the source image
and visualize them as the transferred pseudocolors. Given that these correspon-
dences are directed due to the softmax operator, we compute the correspondences
for every support image to illustrate the effect of using different source image
mappings.

In Fig. F.1, we see that these feature correspondences pick up on the nuances
of the different breeds of dogs, and are able to map similar parts between images,
even with multiple instances of dogs in the same image. In Fig. F.2, we extend
the experiment to a broader class of mammals with similar, albeit slightly less
clear correspondence. In particular, the second row of Fig. F.2 illustrates a case
where the feature correspondences exhibit less structure.

Notably, our model has not been trained with contrastive self-supervised
approaches, and the features are derived from a model trained only supervisedly
on IN1k. Moreover, the class tokens are removed before computing the cross
attention and PCA, which confirms that the tokenized features themselves are
informative for discriminative tasks.

G Extended Discussion on Classification

Certain interesting observations can be made from our results in Table 1. Firstly,
random Voronoi tessellations perform better than data-driven superpixels for
gradient excluding features, and despite its inherent stochasticity, tokenization
with random Voronoi tessellations proves to be a relatively effective strategy, and
demonstrate surprisingly consistent results over prediction tasks as reported in
Table G.1. To account for the stochasticity in validation, we compute accuracy
5 We use torch.pca_lowrank, which has nondeterministic behaviour. Slight deviations

in pseudocolors could therefore occur when reproducing the visualizations.
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Table G.1: Results w. CI (95%) for models with RViT tokenizers (5 runs).
ViT Model IN1k INReaL Cifar100 Caltech256

Name Tok. Feat. Grad. Lin. Lin. Lin. Lin.

RViT-S16 RV Intp. ✗ 0.7669 ± 0.0002 0.8285 ± 0.0003 0.8557 ± 0.0028 0.8521 ± 0.0007
RViT-S16 RV Intp. ✓ 0.7593 ± 0.0003 0.8183 ± 0.0002 0.8563 ± 0.0032 0.8558 ± 0.0006

RViT-B16 RV Intp. ✗ 0.7878 ± 0.0002 0.8436 ± 0.0002 0.8941 ± 0.0043 0.8731 ± 0.0007
RViT-B16 RV Intp. ✓ 0.7892 ± 0.0002 0.8414 ± 0.0001 0.8875 ± 0.0030 0.8644 ± 0.0006

scores over five runs and report 95% confidence intervals in Table G.1. We find
that the segmentations based on the Voronoi tessellations produces remarkably
consistent results over the validation set.

Additionally we note that gradient including tokenizers perform compara-
tively worse for small (S) models. This is particularly noteworthy, since the
gradient features are essentially an added set of features to the model. We spec-
ulate that this could be an artifact of over-fitting on information-dense features,
at the expense of the utility of the canonical pixel features.



30 M. Aasan et al.

Token. Image Att. Flow Proto. PCA LIME (SLIC)

ViT

RViT

SPiT

ViT

RViT

SPiT

Fig.D.1: Visualization of feature attributions for prediction “bee eater ” and “bittern”
with different tokenization strategies: square partitions (ViT), random Voronoi tesse-
lation (RViT) and superpixels (SPiT).
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Token. Image Att. Flow Proto. PCA LIME (SLIC)

ViT

RViT
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Fig.D.2: Visualization of feature attributions for prediction “banjo” and “container
ship” with different tokenization strategies: square partitions (ViT), random Voronoi
tesselation (RViT) and superpixels (SPiT).
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Token. Image Att. Flow Proto. PCA LIME (SLIC)

Fig.D.3: Examples of edge cases for attribution maps with SPiT. Row 1 demonstrates
a case where LIME fails to provide coherent attributions for the prediction “Stafford-
shire terrier ”, and row 2–3 shows cases where the PCA prototype attributions fail for
predictions “ lobster ” and “flute”, respectively. Row 4 shows a case where attributions
for both LIME and PCA prototypes are inadequate for the predicted label “rifle”.
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q = 0.05 q = 0.10 q = 0.20 q = 0.50
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RViT / Comp
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SPiT / Comp

SPiT / Suff

Fig.D.4: Visualization of attention flow occlusions at different quantiles q for predic-
tion “grass snake”. Note how the scaling of attention maps under superpixel tokeniza-
tion improves occlusion for the predicted class.
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q = 0.05 q = 0.10 q = 0.20 q = 0.50
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SPiT / Comp

SPiT / Suff

Fig.D.5: Visualization of attention flow occlusions at different quantiles q for predic-
tion “impala”. Note how the scaling of attention maps under superpixel tokenization
improves occlusion for the predicted class.
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Original Images

Source Feature Correspondences

Fig. F.1: Visualization of feature correspondences from source features from superpixel
tokens (left) to target images (right). Features are mapped via single head normalized
cross attention between tokenized images, using pseudocolors from low rank PCA with
three components. Images contain different classes (breeds) under the common hyper-
nym “domestic dog, canis familiaris”.
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Original Images

Source Feature Correspondences

Fig. F.2: Visualization of feature correspondences from source features from superpixel
tokens (left) to target images (right). Images contain different classes (species) under
the common hypernym “mammal”. The second row (red panda) illustrates a case where
the visualized feature mappings exhibit less structure than in the other examples.
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