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Abstract
Pixel-level prediction tasks inherently face constraints imposed by image resolution and the number of predic-
tion classes. As image resolutions and dimensionalities increase, these constraints lead to significant memory
bottlenecks when explicitly modeling high-dimensional embeddings for each individual pixel. Addressing these
bottlenecks requires the development of alternative, more efficient representations to facilitate continued progress
in the field. In this work, we discuss Embedded Lookup Tables (ELUTs) with indexed segmentation maps as an
alternative data structure for more memory efficient representations in image processing. We show that ELUTs
are inherently compatible with cost functionals and metrics for pixel-level prediction tasks with a significant
reduction in memory overhead.
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1. Introduction

Neural models for dense prediction tasks are designed to extract descriptive features to perform accurate
predictions for each individual pixel. Modern architectures typically leverage pyramidal structures
for multilevel feature extraction [1, 2] to optimize pixel-level representations to delineate high-level
object representations in images with a classification head. In standard formulations, dense image
representations are modeled as 𝑧 ∈ ℝ𝐷×𝐻×𝑊, where 𝐷 is the feature dimension and 𝐻,𝑊 denote the
spatial resolution. Established results from learning theory tells us that 𝐷 should ideally be selected
to be close to or higher than the number of prediction classes 𝐾 for robust modeling in classification
tasks [3, 4, 5]. Consequently, as number of classes 𝐾 grows, so too must the feature dimension 𝐷.

Most imaging domains exhibit pronounced spatial redundancy [6, 7, 8]. A significant number of
neighboring pixels will necessarily belong to the same semantic or instance level class, and naturally
contain embeddings that are highly similar to adjacent pixel embeddings. In order to maintain pixel-level
granularity in semantic and instance-level boundaries, intermediate representations and predictions
need to match the original resolution in order to accurately delineate objects at the pixel-level.

While inherent redundancy is not an issue in and of itself, the problem is exacerbated by two clear
trends in image processing. First of all, image resolutions increase over time as imaging advances and
compute becomes more available [9]. Moreover, embedding dimension grow as categories or classes
increase in line with modeling advances [10], and the shift towards dynamic open-vocabulary classifica-
tion and self-supervised learning paradigms directly necessitates higher dimensional embeddings [11].
As a result, fully realized tensor representations 𝑧 ∈ ℝ𝐷×𝐻×𝑊 become increasingly costly, and present a
bottleneck for further scaling of pixel-level prediction models.

In this work, we introduce Embedded Lookup Tables (ELUTs) as a low-cost alternative to high-
dimensional dense image representations. Grounded in principles from computer graphics [12, 13],
ELUTs offer a compact and efficient formulation for pixel-level predictions in modern modeling pipelines.
We derive theoretical bounds on memory and compute complexity and validate them empirically,
showing order-of-magnitude reductions in peak memory.
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Figure 1: Illustration of a fully realized 𝐷 × 𝐻 × 𝑊 dense representation (a), compared to an 𝐻 × 𝑊 indexed
segmented representation (b) with an 𝑁 × 𝐷 embedded lookup table (c). Our proposition utilizes (c) and (b) to
form a sparse representation of (a) with significantly lower memory overhead.

2. Related Work

Dense raster tensors are natural representations for convolutional networks (CNNs), whose design
natively consumes and emits features in grids. As discussed in Sec. 1, the demands of higher resolution
images in conjunction with higher embedding dimensions indicates that the 𝒪(𝐷𝐻𝑊) overhead is a
bottleneck. Current state-of-the-art foundational models [14] make use of over 131k pseudo-classes for
instance- and patch-level predictions. Extending this to pixel-level predictions remains computationally
intractable without alternative representations. While open-vocabulary approaches [15, 16] alleviate
the issue by aligning with natural language embeddings instead of fixed classes, they necessitate
high-dimensional embeddings and induce the same bottleneck.

Frame Buffers and Palettes. In the formative stages of computer graphics, Kajiya et al. [12] intro-
duced the modern frame buffer for overcoming limitations of memory and compute. Early renderers
were designed such that each pixel stores an index into a color lookup table (CLUT) with RGB color
representations to enable compact frame buffers and real-time hardware color mapping. Later work
expanded on quantization and dithering for optimizing color representations in imaging [13], paving
the way for further developments with palette-based image quantization and lookups for hardware and
software rendering. Color quantization and CLUTs is actively used for effective photometric transforms
in modern GPU rendering [17] and compression in standard image formats [18, 19].

Superpixels and Objecthood. One remedy to the dense bottleneck is to decouple where a feature
lives from what the feature is. If a colour-lookup table can recover an RGB triplet from an index, the
same pattern generalises: store a 𝐷-dimensional feature vector in the table and let neighbouring pixels
that share semantics reuse the index. Superpixels [20] were introduced for this exact purpose, and serve
as a strong indicator for pre-segmentation by partitioning an image into 𝑁 ≪ 𝐻𝑊 connected regions.
By associating each region with an index and each index with a feature embedding, we can construct
image representations that align with semantic content in an image.

Token-based Architectures. Research has seen widespread adoption of Vision Transformers [21]
(ViTs), representing a move away from local receptive fields towards attention operators to model
global interaction between discrete tokens. Tokenization has largely been driven by a simplified
patchification procedure; square patches are extracted as tokens with positional embeddings to encode
spatial information. ViTs for pixel-level predictions have focused on patch upsampling and concatenation
of multiple layer activations [22, 23] to yield full resolution predictions. While studies have shown



that smaller patches are beneficial for predictive power [24, 25], the computational complexity of more
granular tokens is quadratic [26, 27] due to the attention operator.

Recent work have looked to improve on the patch-based tokenization process in a move towards
more adaptive tokenization methods [28, 29]. Adaptive superpixel tokenization have been successfully
applied to allow ViTs to work with pixel level granularity [30, 31], and have been shown to improve
state-of-the-art open-vocabulary segmentation models [32]. As every region carries an integer index,
the image now is an index map; the per-region embeddings form a lookup table, giving exactly the
palette-style pairs illustrated in Fig. 1.

Convolutions on Discrete Topologies. Although CNNs are used for feature extraction and su-
perpixel tokenization [33], they are not inherently suited to discrete embedding spaces in the way
transformers are. By design, a CNN natively consumes and emits features in grids necessitating a
fully realized dense representation 𝑧 ∈ ℝ𝐷×𝐻×𝑊. However, the fundamental neighborhood operations
performed by a CNN can be extended to discrete topologies via graph neural networks [34, 35, 36]
(GNNs). Superpixel-based GNNs have been successfully applied in medical imaging [37, 38], and the
recent long range graph benchmark [39] (LRGB) include two superpixel graph datasets for segmentation,
encouraging further research in vision based GNN approaches.

3. Embedded Lookup Tables with Indexed Segmentation Maps

Adaptive tokenization in ViTs with semantic edge detection provides an opportunity to rethink un-
derlying data structures for pixel‑level prediction. Because the multi‑head self‑attention operator is
inherently permutation‑invariant, spatial relationships must be injected through positional encodings
rather than being implicit via grid topology. This observation suggests that we no longer need to
commit to a fixed, dense lattice as the primitive representation. Instead, we encode each image as a pair

(𝐼 ∈ {1, … , 𝑁 }𝐻×𝑊, 𝑇 ∈ ℝ𝑁×𝐷), (1)

where 𝐼 (𝑝) assigns each pixel 𝑝 to one of 𝑁 superpixel tokens, and 𝑇𝑖 ∈ ℝ𝐷 is the 𝐷‑dimensional feature
for token 𝑖. In training, a batch of 𝐵 images {(𝐼𝑏, 𝑇𝑏)}𝐵𝑏=1 is combined by simple concatenation of tables

𝐼𝐵(𝑝) = 𝐼𝑏(𝑝) +∑
𝑗<𝑏

𝑁𝑗, 𝑇𝐵 = [𝑇1, 𝑇2, … , 𝑇𝐵]. (2)

No padding is required – each regions index range is shifted by the cumulative token counts of preceding
samples. This is the same implementation used in GNNs; variable‑size graphs are merged into a single
supergraph by offsetting node indices and merging edge lists, preserving each subgraph’s topology
without forcing a common size [40].

Conceptually, ELUTs can be viewed an extension of indexed color representations in early frame
buffers; 𝐼 is a two‑dimensional index map and 𝑇 is a lookup table of learned embeddings. The memory
savings follow immediately; instead of storing 𝐷 ×𝐻 ×𝑊 dense features, we store only 𝐷 ×𝑁 entries plus
an 𝐻 ×𝑊 integer map. As long as the segmentation captures spatial redundancy this yields compression
of pixel‑level features, with support for batching of heterogeneous resolutions and token counts.

3.1. Implementation Details

An ELUT representation is straightforward to apply in ViTs, since token representations correspond
directly to the embeddings in the lookup table. Any tokenization process that partitions the image
into connected regions can be applied to extract segmentation maps 𝐼𝑏(𝑝). Different approaches can be
applied for feature extraction; interpolation to a fixed feature size via bounding-boxes in addition to a
joint histogram for positional embeddings provides commensurability with existing ViT approaches [30].



Alternatively, a vision encoder such as a lightweight CNN can be applied for feature extraction to
construct a dense feature map 𝑓 (𝑥) ∈ ℝ𝐷×𝐻

′×𝑊 ′
[31, 32], and features can be extracted by taking

𝑇𝑏,𝑖 = ⨁
𝑝∶𝐼 (𝑝)=𝑖

𝑈(𝑓 (𝑥))𝑝 (3)

where 𝑈 is an upsampling operator and⊕ denotes an aggregation. Positional embeddings are aggregated
by parametric or learnable positions for each region, with optional bounding box coordinates.

Both approaches to feature extraction provide strong results in downstream tasks, however the
former approach is designed to be modularly commensurable with standard ViTs, while the latter can
provide richer semantic features for predictive tasks. Variable length table sizes can be implemented for
multi-head attention in ViTs either via a ragged tensor representation or via zero-padding all lookup
tables to a fixed size.

Tokenization Strategies: Tokenization is central to construct an effective ELUT representation.
Regions are constructed as partitions of an image for which each pixel is expected to have the same
label in the downstream task. Superpixel segmentation with SLIC [41] is a common choice [33, 31]
using centroid clustering, with the caveat that post-processing must be applied to get topologically
consistent regions.

Recent approaches have explored alternative pre-segmentation strategies with stronger topological
guarantees. EPOC [32] uses an transformer-based vision encoder to extract semantic edges with
full receptive field, which is then segmented using watershed [42] in a morphological approach with
semantic boundaries. SPiT [30] applies ground-up community detection mechanisms using a graph-
based hierarchical region merging [43].

Parallel computations. Interestingly, watershed and graph region merging approaches give two
different approaches to flood filling [44, 45]. Watershed applies filling based on a set of seeds given a
gradient image, while graph region merging by processing all pixels uniformly in parallel while updating
the graph representation. Specifically, both approaches can be viewed as optimal spanning forests [46,
47] and are equivalent to optimizing a random walk over the graph [48]. Efficient implementations in
PyTorch [49] can be constructed without external dependencies and custom CUDA kernels [30].

3.2. Space Complexity Analysis

Let 𝑃 = 𝐻 ×𝑊 denote the number of pixels in an image, 𝐷 the feature dimension, and 𝑁 ≤ 𝑃 the number
of regions. We compare the memory footprint of a standard dense feature map

𝑀dense = 𝐷 × 𝑃 (4)

against that of an ELUT representation, which is given by

𝑀ELUT = 𝑃⏟
index map 𝐼 ∈{1,…,𝑁 }𝐻×𝑊

+ 𝐷𝑁⏟
lookup table 𝑇∈ℝ𝑁×𝐷

. (5)

We can express the relative memory usage as

𝑀ELUT

𝑀dense
= 𝐷𝑁 + 𝑃

𝐷𝑃
= 𝑁

𝑃
+ 1

𝐷
= 𝛼 + 1

𝐷
, 𝛼 ≡ 𝑁

𝑃
∈ (0, 1]. (6)

Given this, ELUTs provide an overall memory reduction factor

𝜌 =
𝑀dense

𝑀ELUT
= 1

𝛼 + 1/𝐷
. (7)

Sufficiently high‐dimensional embeddings (𝐷 ≫ 1) gives a ”rule-of-thumb” estimate 𝜌 ≈ 𝛼−1. The
savings can be illustrated by the following example; if 𝑁 compress to 𝛼 = 0.05 of the pixel count, ELUTs
use only ∼ 5% of the dense footprint – a ∼ 20× savings. For an extended empirical analysis, see Sec. 4.1.



Worst‐case vs. best‐case. For 𝑁 = 𝑃 (no compression), 𝛼 = 1 and 𝑀ELUT/𝑀dense = 1 + 1/𝐷,
hence ELUTs incur negligible extra overhead in high-dimensional regimes. In the ideal limit 𝑁≪𝑃,
memory scales as 𝒪(𝑃 + 𝐷𝑁) ≪ 𝒪(𝐷 𝑃). This demonstrates how ELUTs improve on the 𝒪(𝐷𝐻𝑊)
bottleneck of dense tensor representations, trading off a linear-in-pixels index map for a much smaller,
segmentation-driven embedding table.

Batch Processing. Eq. (2) shows that ELUT batching can be implemented by table concatenation
without overhead. For a batch of 𝐵 images with pixel counts 𝑃𝑏 and token counts 𝑁𝑏,

𝑀 (𝐵)
dense = 𝐷∑

𝑏
𝑃𝑏, 𝑀 (𝐵)

ELUT = 𝐷∑
𝑏
𝑁𝑏 +∑

𝑏
𝑃𝑏, (8)

and the same ratio analysis applies, giving

𝛼𝐵 =
∑𝑏 𝑁𝑏
∑𝑏 𝑃𝑏

. (9)

3.3. Equivalence of Cost functionals and Metrics

ELUT representation (𝐼 , 𝑇 ) allows for standard computation of cost metrics – such as MSE, cross-entropy,
or focal loss – as well as metrics such as Jaccard Index (IoU) or DICE coefficients. Given a set of predicted
regions 𝐼 ∶ 𝒫 → {1, … , 𝑁 } as well ground truth labels 𝐺 ∶ 𝒫 → {1, … , 𝐾}, we define region sizes and
the region–class contingency counts

𝑛𝑖 = ∑
𝑝∈𝒫

1[𝐼 (𝑝)=𝑖], 𝐶𝑖𝑐 =∑
𝑝∈𝒫

1[𝐼 (𝑝)=𝑖] 1[𝐺(𝑝)=𝑐], (10)

where 1[⋅] denotes the Iverson bracket. Any loss or metric expressible as a sum over pixels
ℒ = ∑𝑝∈𝑃 ℓ(𝑧𝑝, 𝐺𝑝) can be rewritten exactly as a weighted sum over the contingency table

ℒ =
𝑁
∑
𝑖=1

𝐾
∑
𝑐=1

𝐶𝑖𝑐 ℓ(𝑇𝑖, 𝑐), (11)

recalling that 𝑇𝑖 is the embedding or logits emitted by token 𝑖 and 𝑐 is an target embedding or class
index. Denote by 𝒮 = {(𝑖, 𝑐) ∶ 𝐶𝑖𝑐 > 0} the set of non-empty region–class overlaps. We can then take
(11) as an identity; it trades 𝑃 pixel visits for the at most 𝑆 = |𝒮 | non-empty overlaps.

Batch Processing. Computing cost functionals and metrics in a mini-batch regime requires only
a slight modification for computing contingency tables, where each ground-truth segment needs to
be unique within each sample. This can be achieved by concatenating 𝐺𝐵 = [𝐺𝑏 + (𝑏 − 1)𝐾]𝐵𝑏=1, such
that the original targets can be recovered using a simple modulo operation to determine the global
frequency for the final contingency table.

Complexity reduction. Building the contingency table 𝐶𝑖𝑐 requires a single 𝒪(𝑃) scan of the pixels;
each visit increments the counter (𝑖, 𝑐)↦𝐶𝑖𝑐+1. After that pass, any additive loss or metric of the form
(11) touches only the 𝑆 non-zero overlaps, plus the 𝑁 region marginals. However, the sparsity of 𝑆 is
contingent on how well 𝐼 matches 𝐺. Given that 𝑁 < 𝑆 < 𝑁𝐾, the worst case yields

𝒪(𝑃 + 𝑆 + 𝑁𝐾) = 𝒪(𝑃 + 2𝑁𝐾)
= 𝒪(𝑃 + 𝑁𝐾)

(12)

Thus an ELUT incurs 𝒪(𝑃 + 𝑁𝐾) = 𝒪(𝑃 + 𝛼𝑃𝐾) work per image, whereas a dense raster evaluates
the same objective in 𝒪(𝑃𝐾). As with the space complexity, for 𝛼 = 1 (no compression) a dense
representation outperforms ELUTs but since 𝒪(𝑃 + 𝑃𝐾) = 𝒪(𝑃(𝐾 + 1)) = 𝒪(𝑃𝐾), the representations
technically have the same complexity. However, for the expected case 𝛼 ≪ 1we see significant reduction
in compute for ELUT representations, tied to the reduction factor 𝛼. In a practical modeling setting, the
sparsity of 𝒮 also plays a role, conditional on how well 𝐼 aligns with 𝐺.



Table 1
Empirical per-image memory footprint over ImageNet (224 × 224) using an adaptive tokenization framework [30]
with ViT-B capacity (𝐷 = 768, float32). The dense tensor requires 𝑀dense = 4𝐷𝑃 (147MB), while the ELUT cost
is 𝑀ELUT = 8𝑃 + 4𝐷𝑁 with int64 indices. 𝜌 denotes the reduction factor 𝑀dense/𝑀ELUT.

Steps 𝑡 0 1 2 3 4

Num.reg. 𝑁 50 176 11 940 3 156 795 197
Mem.[MiB] 𝑀 147.4 35.2 9.4 2.5 0.8

Red.fac. 𝜌 0.99× 4.16× 15.27× 54.21× 158.13×

Table 2
Peak GPU memory (GB) and throughput (images/s) for a forward–back-prop pass of cross-entropy (224 × 224,
float32). Measurements are on a single AMD MI250X using 𝑡 = 4 tokenization steps.

Dense ELUT

Batch Size Mem. [GiB] ↓ img/ms ↑ Mem. [GiB] ↓ img/ms ↑

32 4.62 5.32 0.03 3.18
64 9.21 5.28 0.06 3.42
128 18.58 5.22 0.13 3.78
256 36.84 5.23 0.25 4.05

4. Experimental Results

Our experiments are designed to demonstrate feasibility for ELUT representations. In Sec. 4.1 we
perform an empirical study on complexity, showing effective reduction in memory and computational
costs, verifying derivations from Sections 3.2 and 3.3. We then demonstrate the effectiveness of
hierarchical image representations in a simple lossless compression scheme.

4.1. Empirical Complexity Analysis

We compute empirical estimates of expected region counts over ImageNet [50] using an adaptive
tokenization framework with 𝑡 ∈ {1, 2, 3, 4}merge iterations [30]. Table 1 show that even at conservative
levels (𝑡 = 1), ELUTs quarter the memory footprint, while deeper merges further compress the feature
map without altering pixel-wise losses or metrics – cf. Sec. 3.3.

Next, we compute memory overhead and wall-clock throughput for variable sized batches for images
sampled from COCO [51]. We compare a dense feature representation extracted via upscaling [52] with
𝐷 = 768 and 𝐻 = 𝑊 = 224 to an ELUT representation. Features are extracted via the same backbone
over the same batch of images, so the only difference is their representation.

We compute equivalent formulations of cross-entropy for dense and ELUT representations, and
report results in Tab. 2. While our results are not able to verify that ELUTs provide any significant
empirical computational benefits in terms of throughput, the memory overhead is still significant. The
loss is evaluated by gathering the 𝑁 region logits from one contiguous lookup table and weighting them
with the 𝑆 sparse overlaps, so the only overhead comes from scatter/gather operations.

4.2. Information Content and Compression

For a data-structure to be effective, it should ideally result in low entropy representations. Empirically
validating the informational content of general ELUTs is non-trivial, as the representation is highly
contingent on the choice of tokenizer and features, which are typically task-dependent.

We construct a representation independent of feature representations by using a superpixel tokenizer
and compress images using a hierarchical pyramid representation. Each pixel is associated with a parent
region using SPiT tokenizer [30] to form a rooted tree, i.e., we aggregate regions until only a single
node remains. We reuse the very same SPiT partitions that the model computes during training. We



Table 3
Compression results for individual test images and Kodak-24 [53] compared to lossless PNG compression. MiB
is the size of the compressed image, CR denotes the compression ratio, and BPP denotes the bits-per-pixel.

Pepper Lena Barbara Baboon Kodak-24† [53]

Method MiB ↓ CR ↑ BPP ↓ MiB ↓ CR ↑ BPP ↓ MiB ↓ CR ↑ BPP ↓ MiB ↓ CR ↑ BPP ↓ MiB ↓ CR ↑ BPP ↓

PNG 0.586 1.28 6.26 0.245 3.06 2.57 0.627 1.20 6.68 0.629 1.19 6.71 0.420 2.25 4.49
Ours 0.548 1.37 5.85 0.241 3.11 2.61 0.491 1.53 5.23 0.614 1.22 6.54 0.405 1.88 4.32

†: Average over full dataset.

then construct a graph Laplacian pyramid by representing all non-root RGB embeddings mapped to
YCbCr with a difference transform over the depth of the tree. Since a region is typically similar to its
parent this provides a sparse representation, particularly in leaf nodes representing individual pixels.

To encode the overall structure, we extract the Prüfer sequence of the graph [54] along with the
ELUT. In conjunction with a Huffman encoding scheme, this yields a basic lossless compression format,
useful for evaluating the informational capacity of ELUT representations. We measure the information
density by evaluating the compression ratio (CR), bits-per-pixel (BPP) and contrast it with standard
image formats, and report them in Tab. 3. Surprisingly, this simple strategy yields better compression
than PNG, the industry standard. We note that while this is by no means a state-of-the-art approach, it
shows that hierarchical ELUTs provides highly effective image representations.

5. Discussion and Conclusion

In this work, we introduce Embedded Lookup Tables as extensions of well-established representations in
computer graphics to machine learning settings. We show that by factorising a 𝐷 × 𝐻 × 𝑊 map into
an integer index image 𝐼 and a compact table 𝑇 ∈ ℝ𝑁×𝐷, ELUTs replace the 𝒪(𝐷𝐻𝑊) memory wall
with 𝒪(𝐷𝑁 + 𝐻𝑊). Our experiments provide empirical evidence that show how ELUTs provide an
effective alternative in practical modeling tasks requiring pixel level granularity. Since objectives and
metrics can be rewritten using contingency counts, arithmetic shrinks roughly in proportion to the
factor 𝛼 = 𝑁/𝑃.

While our results are not contingent on a single tokenization framework, future work would incorpo-
rate more extensive studies on the effect on training in dense prediction tasks and multiple tokenization
framework. While our scope is limited to 2D imaging in this work, our theoretical results naturally
extends to higher dimensional imaging. Extensions to volumetric data, light-field stacks, and video
frames should benefit even further as the dense baseline grows with an extra dimension while the index
map stays tractable.
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