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Abstract

Vision Transformers rely on fixed patch tokens that ignore the spatial and semantic
structure of images. In this work, we introduce an end-to-end differentiable tok-
enizer that adapts to image content with pixel-level granularity while remaining
backward-compatible with existing architectures for retrofitting pretrained models.
Our method uses hierarchical model selection with information criteria to provide
competitive performance in both image-level classification and dense-prediction
tasks, and even supports out-of-the-box raster-to-vector conversion.

1 Introduction

Transformers [1] have become the de facto architecture for all but a few data modalities [2–8].
The architecture is, however, contingent on the process of tokenization. Tokenizers for natural
language [9, 10] are designed to compress text into morphemes and semantic subwords—minimal
units aligned with meaning. Yet in vision, tokenization is comprised of partitioning images into
uniform square patches, ignoring semantic content and object boundaries in favor of computational
convenience. This highlights a key incongruity; text tokenizers align with semantic units while
patch-based vision tokenizers fragment objects without regard for their structure. Figure 1 illustrates
how patch tokens lack the semantic coherence and granularity necessary for dense predictions.

Efforts to move beyond the grid paradigm include clustering or merging [11, 12] for grouping features
dynamically, or deformable patches [13, 14] to improve spatial adaptivity. Recent work propose
subobject tokenizers [15–17] to partition images into semantically coherent regions, providing gains
in classification, segmentation accuracy, and interpretability. However, each method tackles only one
or two facets of the larger tokenization problem, and none are fully end-to-end learnable.

An effective visual tokenizer must unify precise semantic alignment, differentiability, and adaptive
granularity. Our key insight is that hierarchical pixel-level partitioning can be formulated as a multi-
scale model selection problem, and can be combined with differentiable mechanisms for end-to-end
learning. We propose differentiable hierarchical tokenization (∂HT) for Vision Transformers (ViTs),
emphasizing modularity [18, 19] for reuse and backward compatibility.

Original ViT [2] Quadtree [20] SLIC [16] ∂HT (Ours)

Figure 1: Comparing spatial granularity in visual tokenizers. ∂HT (right) provides an end-to-end learnable
framework for multi-scale tokenization. We provide more examples in Figure E.6.

Code and model weights: https://github.com/dsb-ifi/dHT
39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/dsb-ifi/dHT
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Figure 2: Illustration of the ∂HT tokenization and feature extraction pipeline. From an input image we produce
a hierarchy of superpixel representations. An optimal segmentation is then selected from the hierarchy using
information criteria, and features are extracted for each superpixel. Features can then be used in any ViT
backbone. (Right) We also depict the feature extraction process of a superpixel S where its features are mixed
based on foreground, M+, background, M−, and shared background features, β. Details in Section 2.4.

Our contributions can be summarized as follows:

• Learnable tokens: A novel end-to-end differentiable tokenization method which adapts to training
data, and ensures effective tokenization for classification and segmentation tasks.
• Retrofitted tokenizers: A flexible fine-tuning strategy to adapt pretrained ViTs for superpixel
tokens with pixel-level granularity, enhancing versatility across tasks.
• Multiscale model selection: A lattice theoretic extension of information criteria to multilevel
hierarchical partitioning for selecting the most informative image partitions.
• Image vectorization: A out-of-the-box method for adapting hierarchical superpixel tokenizers to
raster-to-vector graphics conversion, without being specifically trained for this task.

1.1 Motivation

Visual tokenization means discovering a discrete set of regions from a continuous, high-dimensional
image, under strict compute and memory budgets—effectively solving segmentation, compression
and representation learning all at once. Unlike 1D sequences, where you have a natural ordering
and can pick breakpoints by cues such as whitespace and morpheme statistics, spatial data offer no
canonical order. The space of possible region shapes, sizes and connectivity explodes, and tokens
must respect multi-scale structure and spatial invariances. Moreover, full integration with ViTs
require differentiable tokenization—adaptively choosing token count, placement, and shape to adhere
to semantic boundaries to extract meaningful atomistic units from a scene with end-to-end learning.

1.2 Related Work

Existing approaches to adaptive visual tokenization can be organized into three broad categories.

Dynamic Grouping and Merging: Several works [11, 20–22] propose to dynamically cluster or
merge grid tokens within the transformer’s layers. These approaches reduce redundancy and adapt
token budgets per image, but remain tethered to the original grid primitives and do not introduce truly
off-grid partitions. This prevents discovery of true subobject boundaries for semantic coherence.

Deformable Sampling: A different approach stems from replacing fixed patches with learned
sampling with deformation and dynamic positions. DPT [13] and Deformable Attention Transformer
(DAT) [14] learn per-token centers and scales via differentiable bilinear sampling, granting geometric
flexibility. While fully end-to-end learnable, these are still fundamentally patch based, leaving
semantic alignment and object boundaries implicit.

Subobject and Superpixel Tokenizers: Superpixel-based methods partition images into seman-
tically coherent regions prior to encoding. SuiT [16] pools CNN features over SLIC superpixels;
EPOC [17] combines learned boundary cues with watershed grouping to form panoptic tokens; SP-
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former [23] uses hybrid cross-attention pixel-to-token clustering between attention blocks; SPiT [15]
performs parallel hierarchical graph merging.

While SuiT works on a downsampled version of the input image, other methods provide true
pixel-level granularity for extracting subobject tokens. These yield clear gains in classification,
segmentation, and interpretability, but the non-differentiable grouping step prevents the tokenizer
itself from being trained end-to-end.

2 Method: Differentiable Hierarchical Tokenization

Our proposed method builds on previous subobject level approaches to provide the first fully end-
to-end learnable tokenizer for ViTs. We emphasize that ∂HT is not another ViT variant, but a
fully modular tokenizer that can serve as a plug-and-play extension for pretrained models. Our
design emphasizes precise semantic alignment with pixel-level granularity, multi-scale awareness via
hierarchical pruning with information criteria, end-to-end differentiability, and modularity.

High Level Overview: ∂HT produces adaptive tokens through four stages, illustrated in Figure 2.

• Feature projection (Section 2.1): We embed each pixel into a learned d-dimensional feature space
using a lightweight CNN, establishing a similarity metric for subsequent grouping.

• Hierarchical partitioning (Section 2.2): Starting from individual pixels, we iteratively merge similar
adjacent regions to construct a complete hierarchy, capturing structure at multiple scales.

• Optimal selection (Section 2.3): Information criteria identify the partition that best balances model
fit against complexity, eliminating manual threshold tuning.

• Differentiable extraction (Section 2.4): A mean-injection mechanism produces token features
compatible with standard ViTs while enabling end-to-end gradient flow.

Preliminaries: Consider a graph G = (V,E) where the vertices represent pixel positions in a grid
of width w and height h, and edges E are connections of horizontally and vertically adjacent vertices.
We view an image as a signal function x : V → Rc, mapping each vertex v ∈ V to a c-channel pixel
feature. A connected partition of V is a set π = {S : S ⊆ V } which satisfies:

(i) Non-overlapping: For any pair S, S′ ∈ π, their intersection is empty, i.e., S ∩ S′ = ∅.
(ii) Covering: The union of all S ∈ π is the full vertex set, i.e.,

⋃
S∈π S = V .

(iii) Connected: For any vertices u, v ∈ S, there exists a path of adjacent vertices in S starting at u
and ending at v, where each pair of consecutive vertices is connected by an edge in E.

Let Π(V ) be the space of all partitions of V and consider two partitions π1, π2 ∈ Π(V ). If for every
region S1 ∈ π1 there exists a region S2 ∈ π2 such that S1 ⊆ S2, we say that the two partitions form
a hierarchy H = (π1, π2) ordered by refinement.

2.1 Subobject Feature Projection

We use a lightweight CNN encoder f : Rc → Rd to embed each pixel to an initial feature space
f0(v) = f(x(v)). We design f with a residual branch that applies a 1 × 1 convolution to lift the
c-channel input to d dimensions, and a main branch that downsamples via two successive 2 × 2
strided convolutions followed by bilinear upsampling.

2.2 Hierarchical Vertex Merging

We expand on existing methods [15] to construct hierarchical partitions by iterative vertex merging.
On a high level, the procedure pairs vertices with their most similar neighbor and merges them via
parallel connected components, ensuring that each region is a connected superpixel.

More formally, given a positive semi-definite kernel κ : V × V → R≥0, we define the maximally
similar vertex vmax = argmaxu∈N(v) κ(u, v) such that

Emax = {(v, vmax) : v ∈ V } ⊂ E, (1)

pairs each vertex with its most similar neighbor within the neighboring vertices N(v) defined by E.
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Let C1 : V → V1 denote a mapping of vertices to the connected components of the spanning
subgraph1 G[Emax]. Then, C1(v) denotes a connected superpixel region S ∈ V1 such that vertices
within the same component of G[Emax] are assigned to S. In particular, S contains v, vmax, and
potentially other vertices based on similarity. A natural choice for updating the vertex features for V1

is to simply take the average feature values in each component

f̄1(v) =
1

|S|
∑
u∈S

f0(u), S = C1(v). (2)

For a given level t, the mapping Ct induces a graph contraction Gt−1 7→ Gt. Each vertex v ∈ Vt−1
is assigned to a connected component Ct(v) = St ∈ πt, which yields a hierarchy of partitions
H = (π0, . . . , πT ). Importantly, each superpixel St at any level t in the hierarchy is always grounded
in the original pixel positions in V . We formalize the construction in Appendix A.2.

2.3 Hierarchical Pruning via Information Criteria

Having constructed a full hierarchy, we now look to select an optimal partition. The construction
of H is designed to tackle two objectives; multi-scale adaptability and redundancy management.
We compute the hierarchy up to a singleton such that all regions are connected up to a root region
representing the full image. This allows us to frame the search for an optimal partition π∗ ∈ Π(V )
as a model selection problem using information criteria (IC) [24], removing the need for threshold
calibration or gating [20, 25, 26]. Recall that an IC has the generalized form

IC(θ) = −2 logL(θ) + g(dfθ), (3)

where L(θ) is the likelihood of the data under the parameter θ, and g(dfθ) is a penalty function based
on the statistical degrees of freedom dfθ that discourages overly complex models. A choice of IC
typically determines the form of g. Our goal is then to derive an estimate for IC(π∗).

Likelihood: A superpixel representation v ∈ S ∈ π∗ can be considered a piecewise constant model
of the image for which each region S is assigned a constant value µS . We model each pixel feature f0
as i.i.d. samples from a Gaussian distribution, i.e., f0 | S ∼ N (µS ,ΣS). Under this assumption, the
log-likelihood logL(π∗) simplifies to terms only involving ΣS . This aligns with variance reduction
criteria [25], but augmented with additional parsimony constraints. See Appendix B.1 for details.

Degrees of freedom: Traditionally, degrees of freedom dfθ correspond to the number of parameters
estimated in a model. For each superpixel S, µS is a parameter in a piecewise constant model of
image x, making dfθ proportional to the total number of regions in the optimal partition π∗. However,
this cannot be determined exactly without search of all possible combinations in H. Instead, we
leverage the lattice structure [27] of partition space Π(V ), and find that dfθ are inversely proportional
to the total number of connected edges within each S. This gives a proportional estimate

dfπ∗ =
∑
S∈π∗

dfS ∝
∑
S∈π∗

VolG(S)
−1, (4)

where VolG(S) represents the total number of edges (u, v) ∈ E such that u, v ∈ S. This formulation
effectively penalizes partitions that consist of smaller regions (with fewer internal edges), encouraging
larger, more informative regions while still capturing essential structural information. We provide a
formal derivation of this result in Appendix B.2.

In turn, ∂HT prunes a full hierarchy H according to the selected IC, balancing model fit and
complexity to select optimal partitions. We explore the effects of different information criteria on our
method’s performance in Section 3.3.

2.4 Differentiable Token Embeddings

There are two main approaches to feature extraction with superpixel tokenization. The most common
approach is to perform aggregation of regions through a separate encoder [16, 17]. However, this
prevents drop-in replacement in a ViT model, making retrofitting tokenizers to pre-trained models
non-trivial. In contrast, SPiT [15] generalizes the ViT feature extraction process to irregular regions.
Each region’s bounding box is interpolated to a fixed patch size while masking out the background

1See Definition A.2 for details.
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features of the surrounding vertices. This is backward compatible with standard ViTs, but suffers
from being inherently non-differentiable. ∂HT makes generalized ViT features fully differentiable by
introducing weighted aggregation and a novel mean-injection trick reminiscent of straight-through
estimation [28, 29].

At each level t, we collect learning signals from the contraction process by computing features via

ft+1(v) =
|St|

|St+1|
∑

u∈St+1

κ(u, umax) · ft(u), (5)

where |St| and |St+1| denote the number of pixels in the respective superpixel regions at two
consecutive levels in the hierarchy. This update is a weighted variant of (2) with each vertex’s
contribution weighted by the kernel score of their most similar neighbor at step t.

Additionally, let f∗(v) denote the feature of vertex v ∈ V under some optimal partition π∗. To extract
features from interpolated regions of the original image x, the idea is to inject the pruned vertex
features into the original image channels without altering its local texture properties. For each pixel
v ∈ S ∈ π∗, we adjust the pixel feature x(v) by computing

x̂(v) = x(v) +Wf∗(v)− x̄∗(v), (6)

where W : Rd → Rc is a learnable linear mapping. This effectively replaces the mean of each
superpixel region x̄∗(v) = 1

|S|
∑

u∈S x(u) with a learnable estimate from the tokenization process,
enabling full gradient flow from tokenization to the ViT backbone.

Positional Embedding: Previous work has shown that positional embedding computed as a linear
combination of kernelized joint-histogram positions for each region generalize standard learnable
positional embeddings [15]. We extend previous work by allowing for higher resolution, which
provides more fine grained detail to token embeddings, and ablate the effect in Table 8.

Modularity and Retrofitting: Modularity is central to developing complex systems [18, 30], and
allows for architectures that can be broken down into reusable components. Just as transfer learning
lets you fine-tune pretrained task heads, a modular tokenizer enables you to transfer pretrained
models across distinct tokenization schemes without retraining from scratch. To apply this principle
to a pre-trained patch-based ViT, we initialize ∂HT as follows. From (6), we observe that having
Wf∗(v) = x̄∗(v) results in x̂ = x; a perfect reconstruction of the original image. We find that
pretraining the encoder f and the linear mapping W jointly with

Lrec =
1

|V |
∑
v∈V

∥∥x(v)−Wf∗(v)
∥∥2
2

(7)

provides maximally aligned features for fine-tuning a ViT backbone with ∂HT in place of the
canonical tokenizer, allowing for fully differentiable tokenizer retrofitting.

Background Masking: During our experiments on retrofitting, we observe that masking out
background features leads to sparsity when highly irregular regions are interpolated to a fixed size.
Intuitively, masking leads to a minor domain shift in token embeddings, since the original features
are dense within a patch and masking naturally leads to sparser representations. This can result in
slower convergence and loss in performance.

In response, we introduce dynamic adaption of background masks during training. Let q denote the
feature patch size, and let λ ∈ [0, 1], β ∈ Rc×q×q be learnable parameters in a feature extractor.
Let M+

S ∈ {0, 1}q×q be the interpolated foreground mask of a superpixel S, with M−S = 1−M+
S

denoting the background mask. We extract token features F (S) ∈ Rc×q×q via

F (S) = (M+
S + λM−S )⊙ x̂(S) + (1− λ)M−S ⊙ β, (8)

where ⊙ is element-wise product. This tweak allows the model to blend the foreground and back-
ground elements within each region through λ. The parameter β serves as a shared background
feature, which mitigates sparsity by preventing zeroing out background regions completely. An
illustration is provided in the right section of Fig. 2.

We ablate the effect of masking, encoder f , choice of kernel κ and information criteria IC, as well as
other hyperparameters and architectural specifics of ∂HT in Tables 6 and 7.
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Table 1: Classification top-1 and kNN accuracies (224 × 224). The top six rows (above the midline) show
results for the baseline models and retrofitted (RF) ∂HT counterparts. The bottom four rows show results for
models trained from scratch. Models are trained exclusively on ImageNet1k (IN).

IN-Val [31] IN-ReaL [32] IN-v2 [33] Caltech†[34] CUB†[35] Cars†[36]

Token. Pretraining Model Acc@1 kNN Acc@1 kNN Acc@1 kNN Acc@1 kNN Acc@1 kNN Acc@1 kNN

Patch DEiT3 [37] ViT-S16 80.4 80.7 86.1 86.9 69.7 58.3 87.0 77.3 54.6 38.4 24.9 6.5
DEiT3 [37] ViT-B16 82.6 83.1 87.7 88.2 72.6 63.0 90.3 78.0 72.1 49.0 35.1 10.5
TIMM [38] ViT-B32 70.2 69.5 77.0 76.9 54.4 55.9 87.1 73.6 74.8 38.0 21.0 4.0

∂HT DEiT3-RF ViT-S16 80.1 78.4 84.9 83.7 68.2 58.1 88.1 77.4 63.1 46.4 31.1 8.3
DEiT3-RF ViT-B16 83.9 82.9 88.3 87.7 73.2 63.0 91.2 79.1 74.4 52.5 34.7 9.2
TIMM-RF ViT-B32‡ 83.1 81.6 87.3 87.4 72.2 62.4 90.2 78.3 72.8 50.1 39.8 12.9

Patch From Scratch ViT-S16 79.9 77.5 83.9 84.9 68.1 57.4 86.1 76.4 57.2 49.7 21.4 6.3
ViT-B16 81.9 80.4 86.7 87.3 71.1 62.1 88.4 78.0 73.3 52.0 31.3 8.4

∂HT ViT-S16 80.0 77.6 84.1 85.9 69.2 57.2 87.5 76.3 69.6 53.8 23.2 7.9
ViT-B16 83.2 80.3 87.4 88.2 72.8 62.1 89.3 78.1 73.2 51.6 33.0 9.3

†Frozen backbone and linear probing.
‡Note that adaptive tokenization results in higher numbers of tokens compared to baseline.

3 Experiments and Results

We design our experiments to investigate the representation capabilities of our method’s extracted
tokens in multiple settings; including end-to-end learning with classification on ImageNet1k [31],
transfer learning as a drop-in tokenizer replacement for pretrained ViTs (cf. Section 3.1), and demon-
strating decoder-free segmentation models with learnable tokenization (cf. Section 3.2). Moreover,
∂HT can also be evaluated on learnable image vectorization, and we compare our method to learnable
image vectorization models (cf. Section 3.2). Training setup is detailed in Appendix D.

3.1 Image Level Predictions

We focus on transformer baselines trained exclusively on ImageNet1k [31], and validate on various
downstream tasks [32–36]. In addition to reporting top-1 accuracy scores, we perform a kNN
evaluation to assess the quality of the representation space. kNN scores are computed by taking the
max score over k ∈ {10, 20, 50, 100, 150, 200} [39].

Retrofitting: We evaluate the effect of retrofitting ∂HT to pretrained models [37], including the
less common B32 capacity [38] for completeness. We align the ∂HT tokenizer by pretraining using
(7). Then, we finetune pretrained models to replace the canonical tokenizer in the ViT that will be
retrofitted with ∂HT tokenizer. All results are uniformly re-evaluated for fair comparison, explaining
minor differences from previously reported results [37].

Table 1 (top) shows that tokenizer retrofitting has a generally positive effect on linear evaluation
models with base capacity, while maintaining competitive performance for small capacity models.
Interestingly, our kNN results for ImageNet1k indicate that DEiT3 [37] models generally perform
better with kNN than the linear evaluation, which is surprising as one typically expects the opposite.
Contrarily, our retrofitted counterparts yield an expected result; the linear head produces better results
than kNN. On the other hand, our retrofitted models are better aligned with both linear probing and
kNN on Caltech256 [34] and CUB200 [35], indicating that ∂HT provides token representations that
are useful for generalizing beyond the training data.

In general, we observe that retrofitting models with ∂HT enables models to adapt tokens to individual
images, maintaining or slightly improving overall classification performance compared to baselines.

Table 2: Comparison of ViT-S16 models trained from
scratch on ImageNet with different tokenizers. Mod.
denotes commensurability with ViTs, while Diff. de-
notes end-to-end differentiability.

Acc@1

Method Mod. Diff. Small Base

Patch / DEiT [40] ✓ 79.9 81.8
Patch / DEiT3 [37] ✓ 80.4 82.6

SPFormer [12] ✓ 81.7 82.7
SPiT [15] ✓ 75.0 80.4
SuiT [16] 80.9 82.1
∂HT ✓ ✓ 80.0 83.2

Training from Scratch: We compare transform-
ers using ∂HT to standard ViT patch tokeniza-
tion [2] by training models from scratch under
the same training regime, such that training is
guaranteed to be equivalent. This eliminates
confounding factors such as hardware and mi-
nor implementation differences. Contrary to the
retrofitted setup, models trained from scratch use
local gradient features, which have been shown
to improve performance for both canonical and
superpixel tokenization [15] with minimal com-
putational overhead (+0.07 GFLOPs, +256 pa-
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Table 3: Single Scale Semantic Segmentation mIoU
results on ADE20k [41] and COCO-Stuff164k [42].

Dataset Backbone Method Size (↓) mIoU (↑)
ADE20k RN50 [43] UperNet [44] 640 40.1

Swin-B [45] Mask2Former [46] 640 52.4
MiT-B5 [23] Segformer [23] 640 51.0
SegVit-B [47] ATM [47] 512 51.3
BiFormer-S [48] UperNet [44] 640 49.8
BiFormer-B [48] UperNet [44] 640 51.0
ConvNext-L SP-Transformer [49] 640 43.7
SPFormer-S [12] SPFormer 640 46.5
MAE-B [50] UperNet [44] 640 47.1
MAE-H [50] Linear 640 33.3
DINOv2-S [51] Linear 640 44.3
DINOv2-B [51] Linear 640 47.3
DINOv2-B [51] Linear 640 47.3
∂HT-ViT-S MLP 512 47.1
∂HT-ViT-B MLP 512 53.2

COCO164k MiT-B5 Segformer [23] 640 46.7
MiT-B5 Lawin [52] 640 47.5
Swin-B UperNet-RR [53] 640 48.2
ViT-L Segmenter [54] 512 48.4
∂HT-ViT-B MLP 512 48.9

Table 4: Zero-shot segmentation results on salient de-
tection datasets using token-cut. ∂HT outperforms ex-
isting approaches, including other adaptive tokenization
frameworks.

ECSSD [55] DUTS [56] DUT-OMRON [57]

Backbone Fmax IoU Acc@1 Fmax IoU Acc@1 Fmax IoU Acc@1

DINO-B [58] 80.3 71.2 91.8 67.2 57.6 90.3 60.0 53.3 88.0
DINO-B† [58] 87.4 77.2 93.4 75.5 62.4 91.4 69.7 61.8 89.7
SPiT-B [15] 90.3 77.3 93.4 77.1 63.9 89.4 71.1 56.4 86.8
SuiT-B [16] 87.0 80.5 93.8 68.0 60.0 88.8 63.4 57.5 87.2
∂HT-B 92.4 79.9 94.2 77.9 64.4 90.5 71.9 58.7 89.8
†Applies post-processing via bilateral upsampling.

Table 5: Results on raster-to-vector conversion. We
compare with a off-the-shelf baseline (Adobe) and a
differentiable model specifically trained for the task.

DiffVG-5

Method Zero-shot MSE(↓) PSNR(↑) SSIM(↑)
Adobe 0.00712 21.84 0.7318
DiffVG-MC [59] 0.00316 25.54 0.8287
DiffVG-AP [59] 0.00265 26.22 0.8494
∂HT ✓ 0.00178 27.50 0.8541

■ Bed ■ Grass ■ Wall ■ Rug
■ Brick ■ Cat ■ Wood Wall ■ Window

Figure 3: ∂HT tokenized images with feature corre-
spondences (top) and semantic segmentation (bottom).

Figure 4: Comparison of image vectorization with
DiffVG [59] (left) and ∂HT (right).

Figure 5: Image vectorization from ∂HT token extrac-
tion with zooms to show the finer details, comparing
the original image (left) and vectorized image (right).

rameters). Our results show that superpixel tokenization generally provides stronger classification
results than canonical tokenization with patches, cf. Table 1 (bottom) in a strict apples-to-apples
comparison. We also perform a comparison with existing superpixel-based tokenization approaches
in Table 2. Our results show that ∂HT for ViT-B outperforms other methods while preserving modular
compatibility with ViT architectures.

3.2 Dense Predictions

We assess our method on dense tasks by evaluating the fully trained ∂HT models for semantic
segmentation, zero-shot segmentation performance on selected benchmarks, as well as the non-
standard task of image autovectorization, i.e., converting rasterized images to vector images.

Semantic Segmentation: We fine tune our fully trained ∂HT models on semantic segmentation
baselines [41, 42], without a dense decoder for upscaling. Instead, each superpixel is individually
classified as a single segment using a simple MLP head for each token. The results in Table 3 show
that ∂HT provides raw token embeddings that are well suited for image segmentation. A qualitative
analysis with examples can be found in Appendix E, with extended results in Appendix C.

Zero-Shot Segmentation: Table 4 shows results for fully trained ∂HT models using the Token-
Cut [58] method over three selected salient segmentation tasks [55–57]. The results demonstrate that
∂HT provides strong results in zero-shot salient segmentation, and shows that tokens can be used
out-of-the-box with no post-processing or specialized training required.
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Table 6: Tokenizer hyperparameters evaluated on reconstruction based pretraining on ImageNet.

Dimension d Kernel function κ Information criterion

Metric 3 6 8 16 24 32 Cosine Tanimoto Gaussian AIC AICC BIC CIC

MSE (↓) 0.09 0.08 0.06 0.07 0.06 0.06 0.10 0.08 0.06 0.08 0.06 0.07 0.11
SSIM [60] (↑) 0.56 0.55 0.60 0.58 0.57 0.58 0.54 0.55 0.60 0.52 0.60 0.57 0.49

Table 7: Architectural ablations for ∂HT components.
Evaluated with ViT-S16 over ImageNet.

Acc@1

Ablation DEiT3-RF From Scratch

∂HT baseline 80.1 80.0
− CNN 76.9 (↓ 3.2) 75.5 (↓ 4.5)
− mask blending 71.8 (↓ 8.3) 78.9 (↓ 1.1)
− β-mask features 79.7 (↓ 0.4) 79.1 (↓ 0.9)
− kernel aggr. 80.0 (↓ 0.1) 79.7 (↓ 0.3)
− IC pruning† 80.1 (= 0.0) 79.9 (↓ 0.1)

†: Removing model selection increases number of
tokens per image, which increases computations.

Table 8: Ablation on sizes for kernel positional
embeddings, Acc@1 on ImageNet and mIoU on
ADE20k.

Capacity Resolution / GFLOPs Lin@1 mIoU

S16 16×16 / 0.07 78.4 36.4
24×24 / 0.15 80.0 43.1
32×32 / 0.26 80.0 47.2
48×48 / 0.59 80.1 47.3

B16 16×16 / 0.07 81.3 40.6
24×24 / 0.15 83.3 46.9
32×32 / 0.26 83.4 50.4
48×48 / 0.59 83.5 53.5

Autovectorization and Image Tracing: ∂HT provides out-of-the-box superpixel partitions that are
able to represent images with very high levels of detail. By converting these regions into vectorized
representations, our pretrained models can serve as a high quality raster-to-vector graphics pipeline.
We extract the optimal superpixel partition, and convert each region into a vectorized path using
potrace [61]. Since previous work on learnable image vectorization [59, 62] provide few quantitative
baselines, we compare our method to the five examples provided by Li et al. [59] in Table 5. This
shows that ∂HT yields high-quality raster-to-vector conversion, illustrated in Figures 4, 5 and E.3.

3.3 Ablations and Hyperparameters

In our ablative study, we by measuring the effect of architectural mechanisms in ∂HT-S for both
training paradigms. For ablating f as a CNN, we note that f is the foundational source of gradients
from the image, so it cannot trivially be dropped. We therefore replace the CNN with a linear
projection layer over the RGB channels.

Table 7 shows that each component contributes to a drop in accuracy compared to the baseline, with
the exception of model selection. This can be attributed to the fact that model selection represents
a constraint on deduplication. When such constraints are removed, the number of tokens increases
during training, and the model ends up using much more tokens without increase in performance.

Tokenizer Hyperparameters: We ablate the effect of tokenizer hyperparameters by evaluating image
reconstruction quality after tokenization, using mean squared error (MSE) and structural similarity
index measure (SSIM) [60]. We focus on the reconstruction of the tokens (which only requires
training the tokenizer) instead of their predictive properties (which requires training the full ViT) due
to our computational limitations. The ablations compare the cosine, Tanimoto [63], and Gaussian
kernels, as well as the Akaike, corrected Akaike, Bayesian, and correlation information criteria (AIC,
AICC, BIC, and CIC, respectively) [24].

The results in Table 6 show that a Gaussian kernel with d = 8 and AICC produces the best scores.
Moreover, we evaluate the effect of different resolutions for the positional embeddings in Table 8.
These results indicate that increasing the resolution of positional embeddings generally improve
results. However, the effect saturates slightly at 24 × 24 for classification, and at 48 × 48 for
segmentation. Given that increasing the resolution adds to the computational complexity (GFLOPs),
we use these resolutions for our final models.

Scale Invariance: A central feature of ∂HT is that the model can select a subset of tokens that is most
informative to represent each individual image. As a result, the number of tokens differs from image
to image, adapting to variations in information and scale. To evaluate the effect of this behavior,
we perform an experiment where we compare results over various image scales while keeping the
number of tokens equivalent between models. We do this by performing an extra step of merging
after the model selection step, merging regions with high similarity to produce similar numbers of
tokens for each model. This test is performed comparing the retrofitted models to the baselines.
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Figure 6: Scale invariance and token granularity for retrofitted models over ImageNet [31] with extended low-
resolution evaluations (64–768px). The additional points highlight how both patch and adaptive tokenizations
degrade gracefully with coarser sampling, showing stronger invariance for ∂HT.

Our results in Figure 6 show that ∂HT scales considerably better to higher resolutions by adapting
tokens to image content, notably without modification of the resolution of positional embeddings.

For lower resolution images, canonical ViT tokenization provides better results. This is as expected,
since, at lower resolutions, the fixed patch-based tokenization of canonical ViTs is sufficient to capture
the coarser details present in the images. The uniform grid of patches aligns well with the reduced
information content, allowing the standard tokenizer to perform adequately. ∂HT’s adaptive token
selection offers less advantage in this scenario as there is less fine-grained information to exploit.

However, at higher resolutions, images contain more detailed and fine-grained features. ∂HT’s ability
to select and adapt tokens based on the most informative regions becomes highly beneficial. It can
effectively capture critical details without being constrained by a fixed grid, leading to improved
performance over the canonical tokenizer. ∂HT achieves this advantage without modifying the
positional embeddings, demonstrating its inherent scalability to higher resolutions.

4 Discussion and Conclusion

We propose ∂HT, a differentiable tokenizer with pixel-level granularity that uses information criteria
to dynamically select optimal partitions from hierarchical representations. Our experiments demon-
strate that ∂HT achieves strong performance on both image-level classification and dense prediction
tasks while maintaining modularity when retrofitting pretrained models.

Our work establishes tokenization as an adaptive, learnable component in ViT architectures. As
models and datasets scale, this modularity becomes increasingly valuable for adapting representations
to specific tasks and domains. Given the broad applicability of superpixels in vision modeling [64–67],
integrating adaptive tokenization could unlock performance gains across various applications, from
medical imaging to video understanding where temporal redundancy management is critical.

4.1 Limitations

Table 9: Computational efficiency of ∂HT with 24×24
pos. embeddings. Throughput measured on ImageNet-
Val over 4×MI250x.

Cap. Res. Tokenizer Params Tok./s Tok./im.

S16 224 Patch 22.1M 192.3k 197
S16 224 ∂HT 22.3M 94.2k 240
B16 224 Patch 86.6M 89.7k 197
B16 224 ∂HT 86.9M 68.2k 246

S16 384 Patch 22.1M 112.4k 577
S16 384 ∂HT 22.3M 58.1k 494
B16 384 Patch 86.6M 61.6k 577
B16 384 ∂HT 86.9M 48.9k 432

While ∂HT shows promise, it should still be
taken as an early exploration of fully adaptive tok-
enization. Our hierarchical pruning with informa-
tion criteria effectively manages redundancy but
relies on modeling assumptions detailed in Ap-
pendix B. The computational overhead of su-
perpixel tokenization currently results in lower
throughput than canonical ViTs, though this gap
narrows at higher resolutions where adaptive to-
kenization provides greater benefits. At very low
resolutions, reduced semantic information limits
adaptive partitioning benefits, though the method
adapts well to practical image sizes.
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Our feature extraction maintains backward compatibility with standard ViTs, but may not be optimally
designed for irregular superpixel regions. Developing specialized feature extraction methods while
preserving differentiability represents an important research direction.

4.2 Further Work

As mentioned in the limitations, architectural design choices for edge contraction and feature aggre-
gation are promising avenues for optimal design of adaptive tokenization in vision transformers. In
this work, we gather implicit learning signals weighted by the similarity kernel in (5), but extending
this to explicit learnable aggregation with graph neural networks could provide more expressive
modeling. However, such extensions should preserve symmetry and positive semi-definiteness to
ensure consistency and well defined edge contractions in the hierarchy (Appendix A.2).

Extending differentiable tokenization to self-supervised learning represents a natural extension. This
was explored by Lew et al. [16], which train a DINO variant with strong results. In self-supervised
settings, masked image modeling (MIM) paradigms have potential for synergy with differentiable
tokenization mechanisms, providing more direct learning signals via invariants such as translation,
scale, and rotation.

Vision-language models represent another promising research direction, where alignment with
language could help inform the edge contraction process. Adaptive tokenization can be beneficial
for document-focused tasks where fixed patches poorly align with heterogeneous text and layout
structures. Preliminary investigations suggest ∂HT could address key limitations in current docVLM
frameworks by generating tokens that better capture semantic boundaries on a per-sample basis.

Finally, video transformers present a compelling application domain. The quadratic attention com-
plexity makes redundancy management crucial, and spatiotemporal superpixel tokenization could
significantly improve efficiency while preserving semantic coherence across frames.
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A Theoretical Results

In this section, we provide a formal construction for monotonic edge coloring with respect to
graph connectedness, and show that this construction yields a hierarchical partitioning of V in
Proposition A.13. We leverage this result to define a hierarchical graph partitioning in Definition A.14.

A.1 Notation and Preliminaries

[[n]] Discrete sequence (0, . . . , n).
2X Power set of set X .
G An undirected graph G = (V,E).
x c-channel image x : V → Rc.
N(v) Neigborhood of v ∈ G.
C(v) Connected components of v ∈ G.
G[F ] Spanning subgraph of G under F ⊆ E.
Π(V ) Set of partitions over V .

π Partition in Π(V ).
H Hierarchical partition (πt : πt ⊑ πt+1)

L
t=1.

Gt Graph Gt = (Vt, Et) in hier. graph seq.
IC An information criteria.
L Likelihood function.
df Degrees of freedom.
VolG(X) Number of (u, v) ∈ E s.t. u, v ∈ X .
κ(u, v) Pos. def. kernel κ : Rd × Rd → R≥0.

Definition A.1 (Neighborhood). Let G = (V,E) be a graph. The neighborhood of a vertex v ∈ V is
defined by N(v) = {u : {u, v} ∈ E}.

Definition A.2 (Subgraphs). Let G = (V,E) be a graph, and let S ⊆ V . Let G[S] = (S,E[S])
be a graph such that E[S] = {{u, v} ∈ E : u, v ∈ S}. Then G[S] is a subgraph induced by S.
Symetrically, for F ⊆ E, a subgraph G[F ] = (V, F ) is a spanning subgraph under F .

Definition A.3 (Graph Connectivity). Let G = (V,E) be a graph. For v ∈ V , let N0(v) = {v} and
N1(v) = N(v). By recursion, define

Ni+1(v) = Ni(v) ∪
⋃

u∈Ni(v)

N(u). (A.1)

Then C(v) = limi→∞Ni(v) is called the connected component of v. If C(v) = V for any v ∈ V
then G is a connected graph.

Definition A.4 (Reachability). Let G = (V,E) be a graph. We say that two nodes u, v ∈ V are
reachable in G if and only if u ∈ C(v).
Definition A.5 (Equivalence Relations and Classes). Let V be a set. Let ∼ ⊆ V × V be a
binary relation that is reflexive, transitive, and symmetric. Then ∼ is an equivalence relation
on V . Furthermore, for some fixed element v ∈ V , let

[v] = {v′ ∈ V : v ∼ v′}. (A.2)

Then [v] is an equivalence class of v under ∼.

Definition A.6 (Quotient Set). Let V be a set, and let ∼ be an equivalance relation on V . Then

V/∼ = {[v] : v ∈ V } (A.3)

is the quotient set of V induced by ∼.

Definition A.7 (Partition of Sets). Let V be a set. Let Π(V ) ⊂ 22
V

such that for all π ∈ Π(V )

(i) ∅ /∈ π,

(ii) π covers V , i.e.,
⋃

S∈π S = V ,

(iii) for all S, S′ ∈ π, if S ̸= S′, then S ∩ S′ = ∅.

Then π is a partition of V , and we call Π(V ) the set of all partitions of V .

Definition A.8 (Refinement of Partitions). Let V be a set, and let π, π′ ∈ Π(V ). If for all S ∈ π
there exists S′ ∈ π′ such that S ⊆ S′, then we say that π is a refinement of π′, denoted by π ⊑ π′.
Furthermore, we say that π is finer than π′, and equivalently that π′ is coarser than π.

15



Definition A.9 (Hierarchy of Partitions). Let V be a set, and let H =
(
πt ∈ Π(V ) : πt ⊑ πt+1

)T
t=0

.
Then H is a hierarchy of partitions ordered by refinement.

Theorem A.10 (Fundamental Theorem on Equivalence Relations). Let V be a set, and let ∼ be an
equivalence relation on V . Then V/∼ ∈ Π(V ).
Definition A.11 (Weighted Graph). Let G = (V,E) be a graph. Let χ : E → R be a function on the
edges of G. Then G′ = (V,E, χ) is called a weighted graph.

A.2 Hierarchical Graph Partitions

In this section, we construct the main result Definition A.14, which formalizes the construction of
hierarchical partitions via monotonic binary edge coloring.
Proposition A.12 (Partition by Edge Coloring). Let G = (V,E, χ) be a weighted graph, and let
χ : E → {0, 1} be a binary coloring of the edges such that the edge set

Eχ = {{u, v} ∈ E : χ(u, v) = 1} (A.4)

is invariant under transitive closure; i.e., E+
χ = Eχ. Then, the coloring χ induces a partition of V

into connected components, where each component is connected via Eχ.

Proof. From Eχ, we construct a relation ∼ on V such that u ∼ v if and only if u is reachable by
v in the subgraph G[Eχ]. Note that ∼ is symmetric since G is undirected, and transitive due to
E+

χ = Eχ. Since v ∈ C(v) for all v ∈ V , then v ∼ v so ∼ is necessarily also reflexive. Hence,
∼ is an equivalence relation on V , and by the fundamental theorem of equivalence relations, the
quotient set V/ ∼ is a partition corresponding to the connected components of G[Eχ].

Proposition A.13 (Hierarchical Partitioning by Monotonic Edge Coloring). Let G = (V,E, χ) be a
weighted graph, and let χ : E × {0, . . . , T} → {0, 1} be a binary coloring of the edges satisfying

(i) Monotonicity, χ(u, v, t) ≤ χ(u, v, t+ 1) for all {u, v} ∈ E and t = 0, . . . , T − 1.
(ii) For each step t = 0, . . . , T , the edge set Eχ(t) = {{u, v} ∈ E : χ(u, v, t) = 1} is invariant

under transitive closure, i.e., E+
χ (t) = Eχ(t).

Then, χ induces a hierarchical partition of V ordered by refinement; i.e., the partition induced by χt

is a refinement of the partition induced by χt′ for all t ≤ t′, where we have that χt(u, v) = χ(u, v, t)
for all {u, v} ∈ E.

Proof. By Proposition A.12, we have that each χt induces an equivalence relation ∼t,
partitioning V into equivalence classes at level t. Denote this partition by πt. We will show that
for all t ≤ t′, the partition πt is a refinement of πt′ . The monotonicity criteria (i) χ(u, v, t) ≤
χ(u, v, t+ 1) implies Eχ(t) ⊆ Eχ(t+ 1). By induction, Eχ(t) ⊆ Eχ(t

′) for all t ≤ t′, Since
Eχ(t) ⊆ Eχ(t

′), any path using edges in Eχ(t) is also a path in Eχ(t
′). Therefore, if u ∼t v,

then u ∼t′ v. Now, let [u]t denote the equivalence class of u under ∼t. Then [u]t ⊆ [u]t′ for all
u ∈ V and all t ≤ t′. Since πt = V/ ∼t= {[u]t : u ∈ V }, we have that πt ⊑ πt′ , as we wanted
to show.

Definition A.14 (Hierarchical Graph Partition). Let G = (V,E, χ) be an weighted graph where
χ : E×{0, . . . , T} → {0, 1} is a binary coloring as in Proposition A.13, i.e., monotonic and invariant
under transitive closure. Let χ(u, v, 0) = 0 for all {u, v} ∈ E and let ∼t denote the equivalence
relation induced by Eχ(t) for t = 0, . . . , T . Then the sequence

G[Eχ(t)] = (V/ ∼t, Eχ(t)), t = 0, . . . , T (A.5)

is called a hierarchical graph partition, where for each v ∈ V we have that each equivalence
class [v]t = S ∈ πt denotes a connected region for πt ∈ H. For notional convenience, we write
G[Eχ(t)] = Gt = (Vt, Et).

B Modeling Assumptions and Estimators

In this section, we discuss details regarding methodological assumptions of ∂HT from Section 2.4.
We cover the i.i.d. Gaussian assumption on the distribution of pixels, show that this approximation
has precedence, and empirically verify that this it is a reasonable modeling choice, and derive the
estimator for dfπ∗ via atomistic properties of the partition lattice.
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Figure B.1: QQ-plot (left) and residual density (right) for pixel
residuals in ImageNet-Val for ∂HT. The residuals closely follow a
Generalized Normal Distribution.

Table B.1: Ablation on sensitivity to
Gaussian Assumptions.

Shape parameter
Metric b = 2.0 b = 1.0 b = 0.5

MSE 0.06 0.07 0.09
SSIM 0.60 0.57 0.55

B.1 Distrubutional Assumptions

A superpixel model can be viewed as a spatially piecewise-constant approximation to image data,
constrained by connectivity requirements [68]. Specifically, for an image x a superpixel model Mπ

is on the form

Mπ(v) = 1[v ∈ S]µS . (B.1)

Given an image defined on pixels v ∈ V , we assume the existence of a partition π∗ into connected
regions that minimize

LMSE =
1

|V |
∑
v∈V

∥x(v)−Mπ∗(v)∥2, (B.2)

where Mπ∗(v) takes constant value µS for all pixels v ∈ S, and the optimal µS is given by the
arithmetic mean of pixel intensities within S. Given a fixed partition, this choice of estimator is
optimal under the Gauss-Markov theorem as the best linear unbiased estimator (BLUE).

Within each region S, the estimator µS is BLUE under the assumption that the noise affecting pixels
is independent, identically distributed (i.i.d.) with finite variance and zero mean. Further, adopting a
Gaussian distribution for pixels conditioned on region membership xv | S ∼ N (µS ,ΣS) aligns the
squared-error minimization directly with maximum likelihood estimation. Specifically, for diagonal
ΣS , maximizing the Gaussian log-likelihood corresponds exactly to minimizing within-region vari-
ance, connecting clearly with variance-reduction criteria in regression trees and quadtrees [20, 25],
supporting our argument in Section 2.4. This is clear from the log-likelihood for a multivariate
Gaussian of dimension d for a region S, which is given by

logL(θS) = −|S|
2
(d log(2π) + log detΣS)−

1

2

∑
v∈S

(xv − µS)
⊺Σ−1S (xv − µS) (B.3)

= −|S|
2

(
d log(2πe) + log detΣS

)
(B.4)

where (B.4) follows by the MLE for ΣS given µS .

We emphasize that these assumptions are made explicitly and are not automatically justified by the
existence of an optimal partition under variance minimization. The choice of empirical variance as a
criterion to evaluate model fit is commonly employed in nonparametric contexts without distributional
assumptions, hence the assumption of Gaussianity is not strictly necessary but implicit by the choice
of risk minimizer. Claeskens and Hjort [24] show that, even if the candidate models are not parametric
distributions, IC approaches remain asymptotically valid in selecting a model that minimizes expected
prediction error.

To empirically examine the appropriateness of these assumptions, we evaluated the pixel in-
tensity distributions within representative superpixels over ImageNet1k. Figure B.1 show the
residuals follow a generalized Gaussian distribution s.t. x | S ∼ GN (.551, µS , .031). As
GN (2, µS ,ΣS) = N (µS ,ΣS), the model is reasonable, however the residuals are somewhat sharper
and heavier tailed than the approximation.
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Table C.1: Additional Single Scale Semantic Segmentation mIoU on COCO-Stuff [42] for the original 10k fold.
Note the lack of comparative baselines for base capacity models.

Dataset Backbone Method Size (↓) mIoU (↑)
COCO10k Swin-L SeMask [69] 640 47.4

ConvNext-L CAR [70] 640 49.0
Swin-L Senformer [71] 640 49.8
ViT-L Segmenter [54] 512 47.1
ViT-B ∂HT + MLP 512 49.2

We also assess the robustness to the Gaussian assumption. We trained tokenizers under alternative
Generalized Normal distributions with shape parameters b ∈ {2, 1, 0.5}, where b = 2 corresponds to
the Gaussian baseline. Table B.1 shows that the Gaussian assumption yields the best reconstruction
quality, despite final residuals being closer to b ≈ 0.551. This occurs because the distribution is
closer to Gaussian in early training iterations, providing initial stability for model fitting.

The Gaussian assumption primarily affects pruning through residual variance estimation; heavier-
tailed residuals inflate variance, making the criterion more conservative. Importantly, the complexity
penalty remains invariant to distributional misspecification as it depends only on graph topology, and
∂HT demonstrates robustness consistent with theoretical results on information criteria under model
misspecification [24].

B.2 Atomistic Properties of Π(G)

We informally outline some fundamental lattice theory [27] and describe how we can derive an
estimate of the degrees of freedom for a partitioned graph under the constraint of connectivity.

The set Π(V ) is a partially ordered set (poset) under refinement (Definition A.8), and contains two
seemingly trivial elements; one is the minimal partition ⊥ = {{v} : v ∈ V }, called the bottom where
all elements of V are individual blocks. Dually, the top ⊤ = {V }, is a partition in which all elements
are grouped in a single block. Any finite nonempty subset V will necessarily satisfy ⊥,⊤ ∈ Π(V ).
In the partition lattice Π(V ), atoms are defined as the minimal non-trivial partitions that cover the
bottom element ⊥, where each vertex are isolated singletons. Dually, the co-atoms are the elements
covered by ⊤ where all vertices comprise a single set. Independent sets of atoms form what is
equivalent to a basis (independent sets) in constructing more complex partitions that define each
superpixel. Under connectivity in G, the atoms of Π(V ) are precisely the edges E of G.

By assumption of a piecewise constant model, the complexity of the model decreases for courser
partitions such that the level of complexity is maximal at ⊥. Then dfπ∗ is necessarily inversely
proportional to the number of independent atoms each superpixel encompasses within Π(V ). Dually,
it is necessarily also proportional to the number of possible bipartitions required to form the partition
v′ ∪ {v : v ∈ V, v /∈ v′}. Unfortunately, this quantity can be considered more or less intractable,
however, an estimate can be derived by considering the dualistic nature of the partition lattice.

Recall that VolG(S) for some S ⊆ V is defined as |{{u, v} ∈ E : u, v ∈ S}|. Then VolG(S) is
the maximal number of atoms required to form S, which yields a direct measure of the number
of steps between S and ⊥. This is typically formalized via a rank function r : Π(V ) → Z≥0
which turns out to be equivalent to the number of atoms in a partition. However, we are instead
interested in the number of steps between S and ⊤. Noting that for our construction, we have that
r(⊤) = VolG(V ) = |E| is a maxima, we can estimate degrees of freedom of S ∈ π∗(V ) by letting

dfπ∗(S) ≈ |E| ·VolG(S)−1 (B.5)

This serves to penalize partitions S that has lower volume and are closer to ⊥. In effect, the estimate
penalizes higher parameter complexity w.r.t. the piecewise constant model of the image by inducing
a preference for larger connected regions in the superpixel partition.

C Extended Results

In the interest of completeness, we include results for COCO-Stuff on the 10k fold to complement
Table 3. Note that COCO10k is a preliminary release with much smaller number of datapoints,
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Algorithm D.1 Single Merge Iteration
Require: Feature map ft ∈ RN×C

Require: Region map St, Edge set Et

Require: Similarity kernel κ(·, ·)
Require: Information criteria IC(·, ·)
Ensure: Updated feature map ft+1

Ensure: Updated region map St+1

Ensure: Updated edge set Et+1

Ensure: IC penalty LIC
Emax ← ∅
for v ∈ St do

Emax[v]← argmaxu:{u,v}∈Et
κ(u, v)

end for
St+1 ← CONNECTEDCOMPONENTS(Emax)
ft+1 ← ZEROS(N ′ × C)
for u ∈ St+1 do

for v ∈ {v | St+1(v) = u} do
vmax ← Emax[v]
w ← |St(v)|/|St+1(u)| · κ(v, vmax)
ft+1[u]← ft+1[u] + w · ft[v]

end for
end for
Et+1 ← UPDATEEDGES(St+1)
for u ∈ St+1 do
LIC[u]← IC(ft+1[u], Et+1)

end for
return ft+1, St+1, Et+1,LIC

Algorithm D.2 Feature Extraction
Require: Image tensor x ∈ RB×C×H×W

Require: Region features f ∈ RN×C′

Require: Region map S
Require: Grid resolution q ∈ N
Require: Positional resolution p ∈ N
Require: Projection matrix W ∈ RC×C′

Require: Background token β ∈ RC×q×q

Require: Mixing weight λ ∈ [0, 1]

Ensure: Tokenized features F ∈ RN×C×q×q

Ensure: Kernel pos. features P ∈ [0, 1]N×p×p

for u ∈ S do
µu ← meanv∈u(x[v])
µ̂u ← W · f [u]
for each pixel p ∈ u do

x̂[p]← x[p] + µ̂u − µu

end for
end for
F ← ZEROS(N × C × q × q)
P ← ZEROS(N × p× p)
for u ∈ S do

M ← DOWNSAMPLEMASK(S = u, q × q)
for (i, j) ∈ q × q do

s← BILINEARSAMPLE(x̂, bbox(u), i, j)
m←M [i, j]
smix ← λ · s + (1− λ) · β[:, i, j]
F [u, :, i, j]← m · s + (1−m) · smix

end for
P [u]← KERNELPOSEMBED(S = u, p× p)

end for
return F, P

Figure D.1: Core algorithms for ∂HT. Left: Single iteration of hierarchical vertex merging with kernel-weighted
aggregation. Right: Differentiable feature extraction with mean-injection and adaptive masking.

which were updated to include the full COCO164k fold at a later time. Consequently, there are fewer
baselines available. To the best of our knowledge, out of the works reporting results on COCO10k,
there are no instances of base- or small capacity models available. Nevertheless, we include relevant
results for COCO10k in Table C.1, which illustrate that ∂HT performs relatively well compared to
larger models with larger capacity (305M parameters for large (L) compared to 87M for base (B)
capacity models).

D Implementation and Training Details

In the interest of reproducibility, we provide a full overview of our experimental setup and training
configuration. We detail the core algorithms in Fig. D.1. All code and checkpoints are available in
our GitHub repo. Our experiments were conducted as follows:

• Tokenizer Pretraining: ∂HT modules were pretrained to optimally reconstruct images
from ImageNet1k, using (7). We train for 10 epochs using AdamW with 1e-4 learning rate
and 1e-2 weight decay, but find that performance saturates between epoch 5–6. We test the
performance with different hyperparameter settings—cf. Table 6.

• Retrofitting: We select three baseline models trained exclusively on ImageNet1k. Each
model is then retrofitted with our pretrained tokenizer, using the configuration in Table D.1(b).
Models are fine tuned with layer-wise learning rate decay of 0.65 [72], which improves
learning for earlier layers. We evaluate the models over various downstream tasks, yielding
the results in Table 1.

• Scale Invariance: Given how the baseline ViT-B32 model produces very few regions, we
perform a comparative evaluation by adding more fine-grained control over the number of
tokens over different image resolutions. We add merging mechanisms which serves to limit
the total number of tokens in a model, and evaluate baselines and retrofitted models over
various image sizes. The results are provided in Figure 6.
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Table D.1: Configuration parameters for different stages

(a) Pretraining
config value

batch size 2048
epochs 400
dataset ImageNet1k
img.size 192× 192
pos.emb. 16× 16
loss fn. CE (0.1 smooth.)
optimizer LAMB
lr.sched. cos.decay (5 w.u.)
lr (start / base / stop) 3e−3 / 3e−7 / 1e−6
momentum 0.9
dropout path 0.1 (S) / 0.2 (B)
opt. ϵ 1e−7
cutmix α 1.0
augment rand.aug. / aug3

(b) Tokenizer Retrofitting
config value

batch size 2048
epochs 100
dataset ImageNet1k
img.size 192× 192
pos.emb. 16× 16
loss fn. CE (0.1 smooth.)
optimizer LAMB
lr.sched. cos.decay (5 w.u.)
lr (start / base / stop) 1e−7 / 6e−5 / 1e−6
momentum 0.9
dropout path 0.1 (S) / 0.2 (B)
opt. ϵ 1e−8
augment rand.aug. / aug3
llrd 0.65

(c) Finetuning
config value

batch size 512
epochs 100
dataset ImageNet1k
img.size 224× 224
pos.emb. 24× 24
loss fn. CE (0.1 smooth.)
optimizer AdamW
lr.sched. cos.decay (5 w.u.)
lr (start / base / stop) 1e−6 / 1e−5 / 1e−5
dropout path 0.1 (S) / 0.2 (B)
opt. ϵ 1e−8
augment rand.aug. / aug3
llrd 0.9

(d) Segmentation Finetuning
config value

batch size 512
epochs 400
dataset COCO-Stuff, ADE20k
img.size 512× 512
pos.emb. 48× 48
loss fn. BCE + Focal
optimizer AdamW
lr.sched. cos.decay (5 w.u.)
lr (start / base / stop) 1e−6 / 1e−5 / 1e−5
dropout path 0.1 (S) / 0.2 (B)
opt. ϵ 1e−8
augment rand.aug. / aug3
crop scale / ratio (0.5, 1.0) / (0.8, 1.2)
llrd 0.85

• Full Training: We extend these experiments by evaluating a full training procedure, follow-
ing the training process outlined by Touvron et al. [37], Steiner et al. [38], notably without
the use of MixUp [73] augmentation, as blended images produces inaccurate boundaries
for learning coherent regions. Following previous works [15], models trained from scratch
apply gradient histogram features. As is generally recommended, the training was performed
in two steps, outlined in Table D.1(a) and Table D.1(c) respectively. The results are featured
in the lower half of Table 1.

• Segmentation Fine Tuning: Given our fully trained ∂HT models, we perform fine tuning
for semantic segmentation. We replace each head with a single hidden-layer MLP with a
hidden ratio of 4×. The fine tuning is performed using the configuration in Table D.1(d),
and results are reported in Table 3.

• Zero-shot Salient Segmentation: We evaluate our fine-tuned classification model on zero-
shot salient segmentation. We emphasize that the model has not been trained for this task.
Following Wang et al. [58], we compute the graph Laplacian of the token representations,
and compute a bipartition using the Fiedler vector. Foreground masks are selected by passing
masked tokens through the transformer, and selecting the mask that sees the least drop in
performance under occlusion. Results are featured in Table 4.

• Image Vectorization: Our ∂HT tokenizer provide high fidelity superpixels, which can be
directly applied for image vectorization out-of-the-box. From our pretrained tokenizer we
extract both an optimal, as well as a low granularity partition, noting that lower granularity
partitions has much fewer superpixels. We then extract paths for each superpixel in the lower
granularity region, and layer high granularity paths on top using potrace [61], resulting in an
SVG image. We compare results with quantitative baselines in Table 5.
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Figure E.1: Segmentation examples for ∂HT over ADE20k, showing fine grained segmentation labels only
using a simple MLP head without upscaling. Top: Original images (512 × 512). Middle: Annotated target
images. Bottom: Predicted labels from ∂HT.

Figure E.2: More examples of semantic segmentation on ADE20k. Top: Original images. Middle: Annotated
target images. Bottom: Predicted labels from ∂HT.

E Qualitative Results and Visualizations

In this section, we extend the visualizations and results from dense predictions and image vectorization.
Figures E.1 and E.2 shows a selection of segmentation results on ADE20k validation. ∂HT performs
generally well, particularly considering that the predictions are produced with single scale, i.e. we
only use the last level of tokens to produce predictions. The results are in large part due to the
granularity of the model, and the ability to adapt the partitions to the image data. The example in the
second column of Figure E.2 shows an example where the granularity of the prediction is arguably
better than annotations. The examples also demonstrate some typical failure cases, particularly with
undersegmentation for people in the distance, e.g. column four and five of Figure E.1.

In Figure E.3, we show more raster-to-vector graphics conversions on example images from COCO-
Val. We emphasize that our method produces high quality results, despite a comparatively simpler
approach to image vectorization. Unlike other approaches [59, 62], our method does not yield
differentiable paths, and does not optimize the vector graphics for each individual image. Instead,
we simply use the results of our tokenizer, trained with unrelated downstream tasks, to produce
vectorized images.

Figure E.5 illustrates the properties of superpixel hierarchies constructed with different images,
showing how over- and under-segmentation necessitates adaptive model selection mechanisms,
similar to mixed-scale tokenization strategies. By selecting partitions dynamically, ∂HT can adapt to
image data over different scales, and adapt regions to fit image content with pixel level granularity.
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Figure E.3: Examples of vectorized images using ∂HT. The top rows shows original images, while the bottom
rows shows the results of image vectorization. The vectorized images contain (on average) ∼5000 paths.

Figure E.4: Vectorization results with different numbers of paths, increasing from ∼500 (left) to ∼5000 (right).
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Figure E.5: Top: Detailed view of superpixel hierarchies for different images, cf.—Fig. 2. Note that the higher
levels often yield oversegmented regions, while lower levels yield undersegmented regions. By using model
selection with information criteria, our model selects the most informative tokens over the full hierarchy. Bottom:
Original images, included for reference.

Original ViT [2] Quadtree [20] SLIC [16] ∂HT (Ours)

Figure E.6: Comparison of spatial granularity in tokenization methods. Our proposed ∂HT (right) provides an
end-to-end learnable framework for tokenization.
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