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Abstract

For foundation models (FMs) to truly advance computational pathology, they must de-
liver consistent and reliable predictions under diverse, unseen test conditions. Without
such robustness, clinical trust and widespread adoption remain out of reach. Although
many FMs for histopathology now exist, they have to our knowledge not been systemati-
cally tested for robustness by external researchers on independent datasets. In this study,
we evaluate the robustness of foundation model features on three separate histopathology
datasets and find that their performance drops on external data. Our analysis also reveals
that these models often encode dataset-specific information, limiting their generalizability.
To address this issue, we train a Weight-Decomposed Low-Rank Adaptation (DoRA) with
strong data augmentations to improve feature robustness. Our experiments show that
models trained with this adapter exhibit fewer signs of dataset-specific information and
may generate more robust features across domains. These results highlight the need for
robustness testing and encourage incorporating robustness considerations into the devel-
opment, training, and tuning of FMs for histopathology. The code for this work will be
available at https://github.com/dsb-ifi/DoRA-for-FM-robustness

Keywords: Domain Generalization, Robustness, Domain Shift, Computational Pathol-
ogy, Foundation Model, Low-Rank Adaptation

1 Introduction

Deep learning has had a big impact on computational pathology, enabling accurate models
for tasks such as survival analysis, tissue classification, and tumor detection (Echle et al.,
2021). However, ensuring that these models generalize across different domains remains
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a challenge (Kleppe et al., 2021). In histopathology, domain shifts are often unavoidable
due to differences in staining protocols, tissue preparation procedures, scanner hardware,
or institutional practices (Macenko et al., 2009). A model trained on data from one setting
may encounter significantly different input characteristics in another, which can result in
very different feature representations and degraded performance at deployment (Kleppe,
2022). Such lack of generalization and robustness threatens model reliability in deployment
and poses risks to clinical utility and patient safety (Van der Laak et al., 2021).

Foundation Models (FMs) have emerged as a promising approach in this context. These
models are pre-trained on large, diverse datasets and typically use extensive data augmen-
tation during training. FMs aim to capture broad, transferable representations, and are
often expected be more robust and less susceptible to domain shifts (Zhai et al., 2022;
Oquab et al., 2023). However, recent studies suggest that FMs in histopathology may
not reliably generalize to out-of-distribution conditions, raising questions about their de-
pendability in varied clinical environments (Vaidya et al., 2024; Koémen et al., 2024; de Jong
et al., 2025). Nevertheless, FMs offer substantial potential because they are trained on huge
image sources to represent much biological information in feature embeddings that are far
more manageable than the gigapixel Whole-Slide Image (WSI) they represent. If they can
also produce more robust features, they may serve as powerful backbones for downstream
pathology tasks, reducing the need for extensive training, data, and annotation.

In this work, we evaluate the robustness of FMs in histopathology and explore a po-
tential approach to improve the feature representations under domain shifts using Weight-
Decomposed Low-Rank Adaptations. This method is particularly suitable for FMs, which
are challenging to fully fine-tune due to their large size and the lack of public access to the
huge image sources most FMs are trained on.

2 Background

During the past few years, several FMs for histopathology have been released. These mod-
els are typically large Vision Transformers pre-trained using self-supervised, contrastive
methods. Phikon (Filiot et al., 2023) was one of the earliest FMs, reaching state-of-the-art
performance on several histopathology benchmarks. This model was trained with masked
image modeling using iBOT (image BERT pre-training with Online Tokenizer) (Zhou et al.,
2021). Among recent FMs, Virchow2 (Zimmermann et al., 2024) was considered the most
robust FM by de Jong et al. (2025) and performed on par with other recent FMs in a study
by Campanella et al. (2025). Virchow2 was trained using DINOv2 (Oquab et al., 2023): a
mix of iBOT and DINO (self-distillation with no labels) (Caron et al., 2021). In this work,
we evaluate the robustness of both Phikon and Virchow2 under domain shifts and explore
a possible strategy to improve their generalization.

Given the challenge of domain shift and no available target domain during training,
the problem falls within the scope of domain generalization. Various domain generalization
techniques have been proposed to improve model robustness, including transfer learning and
data augmentation (Zhou et al., 2022). In computational pathology, data augmentation such
as stain color augmentation is commonly used to mitigate the effects of domain shift (Tellez
et al., 2019). It works by using photometric and geometric augmentations in image space
to synthetically simulate new domains, and has been shown to improve the generalizability
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of deep neural networks for pathology (Tellez et al., 2019; Jahanifar et al., 2025). Pohjonen
et al. (2022) argues that strong augmentations are needed to improve model robustness.
These techniques are applied when pre-training or training the encoder.

These domain generalization approaches rely on tuning the encoder, which poses a
significant limitation when working with FMs, which are typically very large and expensive
to train or adapt. Re-training or fine-tuning these models for each new task or deployment
is impractical. Moreover, FMs are usually trained on huge proprietary datasets that are
not publicly available. Re-training on smaller datasets might make them forget important
discriminatory information learned from the original data. As a result, traditional domain
generalization techniques are not well suited to make the output of FMs in histopathology
more robust. New strategies are needed to improve robustness without full-scale re-training.
Our work aims to address this limitation by using an efficient, adapter-based tuning method
tailored to large FMs. Specifically, we propose low-rank adapters to fine-tune FMs without
changing their weights, using augmentations to simulate domain shifts.

3 Methodology

A possible solution for fine-tuning large FMs with limited

Merged

data and resources is Low-Rank Adaptation (LoRA) Hu et al. veisits

(2022). LoRA is a fine-tuning technique that, instead of up- —

dating a full weight matrix, learns a weight update matrix it

AW which is reparametrized as a low-rank decomposition

AW = AB. The weight update matrix is injected into each P

agnitude w

dense layer in the network, and contains the only weights up- = oo N

dated during training. The resulting weights are given by B ;
W’ _ W + AW _ W + AB Direction
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A later development of LoRA known as DoRA (Weight-
Decomposed Low-Rank Adaptation), uses further weight de- Figure 1. We update the
.. . .. o1e . model X by introducing a DoRA
composition to improve training stability and the learning ca- adapter (4, B, and the mag-
pacity of the parameter-efficient fine-tuning (Liu et al., 2024).  pitude) (Liu et al,, 2024) that
This is done by decomposing the weight matrix into magni- is trained to simulate the corre-
tude and direction components, and applying LoRA to the sponding fine-tuning of X.
directional component as shown in Figure 1. This extension
has shown improved robustness over training parameters, and overall improved performance
compared to LoRA when used on larger vision models (Liu et al., 2024). We therefore ex-
plore the use of DoRA to tackle domain generalization issues in FMs.

We follow prior work in domain generalization for histopathology by training with aug-
mentations. We use Caron et al.’s (2021) DINO framework to tune the FMs in a self-
supervised way. DINO has been shown to learn powerful visual representations that trans-
fer more effectively than those trained with supervision (Caron et al., 2021), making DINO
suitable for our goal of improving robustness of learned features. We follow Pohjonen et al.’s
(2022) work and apply strong augmentations to the DINO views, including full variations
in color hue, and high variability in brightness, contrast, saturation and Gaussian blur.
Consistent with Zimmermann et al.’s (2024) work, we avoid heavy changes of aspect ratios,
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as this may distort the biological meaning of cells and other structures in histopathology
images. We also omit solarization augmentations, as this may generate ineffectual color
profiles that are highly unlikely to occur as part of domain shifts in this field (Zimmermann
et al., 2024; Faryna et al., 2021). Our method combines parameter efficient self-supervised
tuning with strong augmentations to improve the robustness of FM features under domain
shifts.

4 Experiments

We a‘pply our methOd to three dlStlnCt Lung Squa‘_ Phikon features Virchow?2 features
mous Cell Carcinoma (LUSC) datasets and ana- ;

lyze the resulting feature representations. We as-
sess the robustness of FM features and investigate
whether tuning FMs with low-rank adaptations and
strong augmentations can reduce the impact of do-
main shifts in histopathology.
Datasets. We consider three datasets of LUSC o .
images in our experiments: The Cancer Genome , i q
Atlas (TCGA), University Hospital of North Nor-
way (UNN), and University Medical Center Mainz
(Mainz). TCGA is a public dataset, and is part of Figure 2. t-SNE plots for Phikon and
the training data for the Phikon model (Weinstein Virchow2 original features (top) and DoRA
et al., 2013; Filiot et al., 2023). UNN and Maing Aeted features tuned on UNN (botiom).
e plots show a more clear clustering for
are private datasets collected from hospitals in Nor-  ¢he original features, suggesting these fea-
way and Germany, respectively. Although these two tures are more dataset dependent. This is
datasets were scanned at the same lab, staining and an undesired quality for domain generaliza-
tissue pre-processing was performed locally at each tion.
hospital. The TCGA LUSC subset includes 464 patients and 498 WSIs. The internal
datasets are smaller, with UNN comprising 289 patients and WSIs, and Mainz has 232
patients and 233 WSIs.

Original

DoRA

4.1 Domain shifts in FM features

In this section, we analyze the effect of domain shifts across three datasets on the features
generated by the original FMs. Figure 2 shows t-SNE plots of features from 10 random
image patches (tiles) from each WSI, produced by Phikon and Virchow2. t-SNE plots
do a non-linear dimensionality reduction that preserves local structures, such that similar
input datapoints should be close together in the reduced space. The clear clustering of
tile features by dataset in the Phikon feature space suggests that features from the same
dataset are more similar to each other than to those from different datasets; even though
the underlying biological characteristics may be similar. This highlights limited domain
generalization of the features. This clustering is less apparent for Virchow?2 features, but
this does not necessarily indicate that the features are robust across domains (see below).
To further evaluate the robustness of the FM features, we train models to predict overall
survival using the features as input to the ABMIL (Ilse et al., 2018) algorithm and compare
the performance of the features on internal and external data. This ABMIL head is trained
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Figure 3. Phikon (top) and Virchow2 (bottom) performance evaluated on internal and external datasets.
The performance drops when evaluated on external data, suggesting robustness issues. The “Not Test set”
refers to training on the union of the two datasets not used as “test set.”

for 100 epochs with a Cox loss (Katzman et al., 2018), with constant learning rate of 0.0002,
and batch size 64. We use a weighted random sampler to load the training data, accounting
for dataset imbalances in disease-specific survival events. We compare the performance of
models in internal (ABMIL head trained and tested on the same dataset) versus external
(trained on different datasets than tested on) evaluation settings. We conduct internal
evaluations using 5-fold cross-validation. Each evaluation was repeated 20 times, and we
report the average concordance index (c-index) (Harrell et al., 1982) across these runs.
The results for Phikon and Virchow?2 features are shown in Figure 3. For Phikon and test
sets TCGA and UNN, we observe a considerable drop in performance when features are
evaluated on external datasets. This drop is less visible when testing on Mainz, where
models trained on TCGA and UNN achieve results comparable to those trained directly
on Mainz. However, this may be due to the larger combined training set rather than
generalization properties. For Virchow?2 features, we also observe a drop in performance for
external evaluation. Since robust features should generalize well across input domains, this
observed drop confirms that both Phikon and Virchow2 struggle with domain robustness
in survival prediction.

4.2 DoRA adapter for robustness

In this section, we train DoRA adapters for the Phikon and Virchow2 FMs and compare
the resulting features with the original features. For each FM, we train three DoRA-tuned
models, each using one of the datasets: TCGA, UNN, or Mainz, as the tuning set. The
DoRA adapters are placed within each Vision Transformer block, and trained with a LoRA
rank of 16, dropout rate 0.1, and for 100 epochs. We follow training hyperparameters from
the original DINO paper (Caron et al., 2021), except for a reduced batch size of 4 for
Phikon and 1 for Virchow2, due to GPU limitations. We evaluate the features using t-SNE
visualizations, dataset clustering metrics, and K-Means clustering metrics. We also visually
inspect WSI tiles in the K-Means clusters.

Figure 2 (bottom) shows that there is no longer a clear clustering of Phikon DoRA
features according to dataset. This suggests that the DoRA-tuned Phikon model captures
less dataset-specific information, as features from different datasets are closer in distance
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Table 2. K-means feature clusters’ purity scores with standard deviations of Phikon and Virchow2 with
and without DoRA-tuning. Best results for each base FM is highlighted.
FM Phikon Phikon + DoRA Virchow2 Virchow2 + DoRA
Tuning set None TCGA UNN Mainz None TCGA UNN Mainz
Purity score | 0.986 £ 0.002 0.567 £ 0.002  0.596 +0.002 0.594+0.002 0.632+0.007 0.549 +£0.005 0.501 % 0.003 0.573 = 0.005

in the new t-SNE plot, compared to the original Phikon features at the top of Figure 2.
We briefly experimented with weaker augmentations during DoRA training and observed
less mixing of datasets in the Phikon t-SNE plots, suggesting an effect from the strong
augmentations. Future work could experiment more with different augmentations. For
Virchow2, there is little visible difference between the original and tuned features.

Per-dataset clustering. If we consider Table 1. Cluster evaluation of per-dataset clusters.
each of the three datasets as a cluster, we We show baseline (non-tuned) Virchow2 and Phikon

can use classical cluster metrics to eval- feature clusters (top row of each FM), and tuned with
DoRA on each dataset (bottom 3 rows of each FM).

. Best results for each metric and base FM are high-
are spread out in features space. Table 1 lighted.

displays the results of three cluster met-

uate how features from different datasets

. hich leul d K 100 q FM Tuning set Sil. | CH| DB?
ri ich ar in random
ics, which are calculated using andomm T fon None 0.055 8990 2.9
tiles from each WSI. The Silhouette score  Phikon + DoORA  TCGA —0.039 1956 12.5
(Sil.) decreases for all tuned versions of the UNN —0.043 1468 9.1
. . Mainz —0.028 1501 7.3
FMs, meaning these tile features fit less well  virchow2 None 0.014 1734 7.8
within their dataset cluster. This indicates  Virchow2 + DoRA  TCGA 0006 802 127
. UNN 0.004 799 15.7
that the tuned models produce tile features Mainz 0.006 1031 11.2

that are less similar to other tiles in the
same dataset, compared to tiles from other datasets, suggesting that the new tile features
capture less dataset differences and more of other differences, which could be biological
differences. The Calinski-Harabasz (CH) index also decreases for all tuned versions of the
FMs, meaning a lower ratio of between-clusters to within-clusters dispersion. This suggests
reduced separation between features from different datasets and more separation between
features from the same dataset, which is preferable for domain generalization. The Davies-
Bouldin (DB) index increases with at least 149% for Phikon tuned models and 44% for
Virchow2 tuned models. This means tuned dataset clusters are less compact and overlap
more, which is what we desire for improved domain generalization because features from
different datasets are then less separable. The consistent improvement in clustering met-
rics for the tuned models suggests that the DoRA adapters reduce the dataset-dependent
information in the FM features compared to the original FMs.

K-Means feature clustering. Here, we perform K-means clustering on FM features and
analyze the resulting clusters to evaluate the quality of the features. Unlike per-dataset
cluster evaluations, this sheds light on which features are close in the learned space, and
how different datasets and biological characteristics are distributed across the clusters.

We perform K-Means clustering on 100 random tiles per WSI, which splits the tile
features into 200 different clusters. In preliminary experiments, we used 1000 tiles, which
gave similar purity scores. Due to time constraints, we use 100 tiles in these experiments.
First, we consider the cluster purity scores: the proportion of tiles from the most common
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(a) Center tiles (b) Middle tiles (c) Outer tiles
Figure 4. Tiles that are close to the a cluster center (left), have a medium distance to the center (middle),
and are far from the cluster center (right) for Phikon and Virchow2 with and without DoRA-tuning.

dataset within each cluster, averaged across all clusters and over 20 repetitions of the K-
means algorithm with different random initializations. The optimal purity score in our case
is %, and the worst score is 1. The results are shown in Table 2: the DoRA tuned versions
of the FMs all improve the purity score. Calculating p-values using a two-sample t-test
comparing a base FM to a corresponding DoRA training, all tests give p < 0.0001 meaning
the purity scores for tuned models are significantly different from their baseline. Since all
datasets contain the same cancer subtype, it is desirable that the clusters are able to gather
tiles across datasets in the same clusters. This may suggest that the tuned models are
able to capture more biological similarity as opposed to dataset similarity, indicating more
robust feature representations.

To further explore the difference of the K-Means clustering for the different models,
we visually inspect tiles in different clusters and observe some trends. Figure 4 shows tile
examples for Phikon, Phikon+DoRA (tuned on UNN), Virchow2, and Virchow2+DoRA
(tuned on UNN) clusters. More examples can be found in Appendix A. The tuned clusters
display greater variation in tile color profiles, particularly near the cluster centers. In
contrast, center tiles from most Phikon and many Virchow2 clusters tend to have very
similar color schemes, suggesting that these models encode more color-specific information
in their features. This is undesirable since domain shifts in histopathology often include
staining or scanning differences resulting in different color schemes of the WSIs. Tiles near
the cluster centers are considered to be similar according to the learned feature space of
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a model. Thus, compared to the non-tuned models, the DoRA-tuned models appear to
cluster together tiles from different datasets more based on characteristics such as tissue
type, and less by color (Figure 4 and Appendix A).

Considering biological similarities within the clusters, all Phikon-based models appear
to have a quite large variance of tissue types within most clusters, even though tiles near
the cluster centers often appear to be biologically similar. For Virchow2, some clusters do
very well at capturing only similar biological tiles within the same cluster (Figure 4 and
Appendix A). This is also something we find in many DoRA-tuned Virchow?2 clusters, which
may appear to create clusters with even greater biological similarity that include more tiles
from different datasets, which reflects the improved dataset purity observed earlier (Table 2).

We also observe that low-quality artifacts such as blurred, empty, or very dark tiles
are placed in different clusters for the different models (examples in Appendix Figure A.8).
Phikon clusters typically have these tiles in clusters with normal cluster centers (Figure 4).
For DoRA-tuned Phikon, some small clusters tend to group these artifact tiles together, re-
ducing their presence in other clusters. Both Virchow2 and DoRA-tuned Virchow2 produce
some clusters dedicated entirely to artifact tiles, but the DoRA-tuned version also distin-
guishes between the different types of artifacts, and generates more clusters for them. This
could be because biologically similar tiles from different datasets are more frequently clus-
tered together in the DoRA-tuned Phikon and Virchow2 compared to the original Phikon
and Virchow2, which reduces the purity score and makes it possible with additional clusters
to represent different types of artifacts.

Overall, these results indicate that DoRA-tuning with strong augmentations improves
cluster quality by encouraging invariance to staining and scanner differences while keeping
biological information, thereby enhancing robustness of the models’ features. This raises
a question of whether current pre-training strategies for foundation models in histopathol-
ogy are sufficient, or if performance could be improved either by incorporating stronger
augmentations during pre-training, or by adding a post-training step similar to our DoRA
adaptation with heavy augmentations.

5 Conclusion

In this work, we evaluated the robustness of FM features in computational pathology, and
found that current models exhibit non-robust behavior. The FMs we tested performed
worse on external test data than on training data, and their features encoded dataset-
specific information, limiting generalizability. To address this, we explored training a DoRA
with strong augmentations for the FMs, which showed promising improvements in feature
robustness across domains, as demonstrated by clustering evaluations and visual inspections.
Our results highlight the importance of testing robustness for models, even when trained
on large-scale data. Future work should assess more FMs across diverse test datasets,
and explore additional adaptation strategies. Establishing a benchmark for robustness in
histopathology FMs would help guide progress in the field. Strengthening the reliability of
FMs is important to build clinical trust and realize their full potential in computational
pathology.
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Appendix A. Additional Results

Figure A.1. A Phikon cluster. This cluster contains tiles from only UNN and Mainz. Several tiles far
from the center have artifacts: many are blurred and one contains very little tissue. Most tiles have a very
similar color profile.
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Figure A.2. A Ph1k0n+DoRA tuned on TCGA cluster. The center tiles (left) consist of purple hued Mainz
tiles and more pink-hued TCGA tiles. The cluster contains tiles from all three datasets.
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Flgure A.3. A Ph1kon+DORA tuned on Mainz cluster. This cluster contains tiles from all three datasets.
We notice biological similarities among tiles near the cluster center (left), but more differences when we also
consider tiles far from the center (right). There are artifact tiles present in the cluster far from the cluster
center (right).
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Figure A.4. A Virchow?2 cluster. We notice biological similarities among tiles near the cluster center (left),
but more differences when we also consider tiles further from the center (middle + right).
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Figure A.5. A Virchow?2 cluster. We notice biological similarities among tiles throughout this cluster, as
well as some color variations between center tiles.
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Figure A.6. A Virchow2+DoRA tuned on Mainz cluster. The cluster contains tiles from all three datasets.
We notice biological similarities among tiles throughout this cluster, as well as large color variations between
the tiles.

TCGA

Flgure A.7. A Virchow2+DoRA tuned on TCGA cluster. We notice biological similarities among tiles
throughout this cluster, as well as large color variations between the tiles.
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TCGA

Figure A.8. A Virchow2+DoRA tuned on UNN cluster: all tiles appear heavily blurred. This is an example
of a cluster with artifact tiles.

10



LoRA FOR GENERALIZABLE F'M FEATURES

Phikon features

Virchow?2 features

Original

DoRA-tuned TCGA

DoRA-tuned UNN

DoRA-tuned Mainz

k| @ CGA aMainz n UNN

Figure A.9. t-SNE plots for Phikon and Virchow2 original features (top) and DoRA adapted features
trained on the three different datasets (bottom three). For all models, we extract features for all features
and plot 10 random tile features from each WSI. The plots show a more clear clustering for the original
Phikon features, suggesting these features are more dataset dependent. The different DoRA-tuned Phikon

features all show less apparent dataset clustering.
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