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Abstract—Bone suppression in lung radiographs is an impor-
tant task, as it improves the results on other related tasks,
such as nodule detection or pathologies classification. In this
paper, we propose two architectures that suppress bones in
radiographs by treating them as noise. In the proposed methods,
we create end-to-end learning frameworks that minimize noise
in the images while maintaining sharpness and detail in them.
Our results show that our proposed noise-cancellation scheme is
robust and does not introduce artifacts into the images.

Index Terms—lung cancer, bone suppression, autoencoder,
convolution neural network, deep learning.

I. INTRODUCTION

Chest radiography (CXR) is the most commonly used
diagnostic imaging technique for identifying chest diseases
such as tuberculosis, pneumonia, and lung cancer. This is
because CXR is the most cost-effective, routinely available,
and dose-effective diagnostic tool. It also has the ability
to reveal certain unsuspected pathologic alterations. Among
different chest diseases, lung cancer is responsible for more
than 900000 deaths each year, making it the leading cause of
cancer-related deaths in the world [1].

Accurate suppression of bony structures is essential for
computer-aided diagnosis tasks that include various size mea-
surements, detection, and classification of lung nodules [2] and
interstitial lung disease.

There are several reasons why automated analysis of chest
radiographs can benefit from suppression of bony structures. A
study [3] showed that most lung cancer lesions that are missed
on frontal chest radiographs are located behind ribs, and that
inspection of a soft tissue image can improve detection perfor-
mance by humans. Automated lung cancer detection schemes
also suffer from false positives caused by superposition of
bony structures [4]. Small subtle abnormalities occur often in
radiographs of tuberculosis-affected people, and it is expected
that the detection of these abnormalities can be improved by
rib suppression.

One way to reduce the visual clutter of overlying anatomy
in CXRs is dual-energy subtraction (DES) imaging [5]. DES
radiography involves capturing two radiographs with the use of
two X-ray exposures at two different energy levels. These two
radiographs are then combined to form a subtraction image
that highlights either soft-tissue or bone components. However,

only a few hospitals use a DES system because of the required
specialized equipment.

Another way to suppress bones in CXRs is using an
image processing technique that does not require specialized
equipment for DES. The commercial software ClearRead Bone
Suppress of Riverain Technologies [6] is a tool for bone
suppression in CXRs that has been approved by FDA and
CFDA. Other methods are based on features extracted by
analysis of huge DES image datasets [1, 7, 8, 9] or on
subtracting the segmented bone structure from the original im-
age [4, 10, 11, 12, 13, 14]. Huge DES datasets are difficult to
receive, and intermediate segmentation results require manual
or semi-automatic delineation. The presence of such kinds of
dependencies motivates us to do research on other effective
and dependency-free methods of bone suppression.

In this paper, we propose two architectures to perform
bone suppression from CXRs. The architectures are sup-
posed to denoise bones from images instead of subtraction
of bone shadows or feature extraction analysis. Thus, they are
completely different from what was already shown for bone
suppression purposes.

The first model is a family of convolutional autoencoders,
while the second one is a family of a simple convolutional
neural network (CNN). Our learning framework for both
models is driven by a denoising reconstruction function,
instead of the, commonly used, identity. In our proposal, we
explore a loss function that exploits the structural similarities
in the image while maintaining the reconstruction as the main
goal. Experimentally, we find the best configuration for our
proposed models. Moreover, we found that our models are
capable of transforming standard CXR images into soft-tissue
images. Our final trained models will have a better lung disease
detection rate.

II. PREVIOUS WORK

We distinguish two categories of existing methods for
bone suppression: supervised and unsupervised. The suppres-
sion problem becomes a regression-prediction problem in the
supervised category. Extracting the useful information and
recognizing the characteristic structures from the CXR to
estimate the corresponding soft-tissue or bone components
are the key problems for the regressors [4, 7, 15]. In most
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cases, regressors are trained or optimized by teaching DES
radiographs to estimate the soft-tissue or bone images.

On the other hand, the unsupervised methods for bone
suppression do not require teaching DES with radiographs,
but these methods need segmentation and the border locations
of bony structures. The bone-free images are reconstructed
with the blind-source separation approach or the gradient
images modified according to the intermediate results. The
effectiveness of unsupervised methods highly depends on the
accuracy of segmentation and the border locations of bony
structures.

A. Supervised Methods

Loog and Van Ginneken [8] proposed a general filter
framework based on regression which has been applied to the
suppression of bony structures. In their next work [4], they
attempted to learn a complex non-linear filter directly from
the pixel data. The set of input features did not consist of
raw pixel values but of a set of Gaussian derivatives. It gave
promising results but was not further evaluated on a clinical
problem.

Suzuki et al. [1, 7, 16] employed a massive artificial neural
network to predict the bone image from a standard chest
radiograph which can be subtracted to yield an image similar
to a soft-tissue image. They reported a reduction of the contrast
of the ribs and showed that this technique increased the
visibility of nodules.

Recently, Yang et al. [9] presented a cascade of convolu-
tional networks with three convolutional layers, trained with
404 dual-energy chest exams to estimate, and subtract the bony
image from the input image to obtain a virtual soft tissue
image. The authors use a multi-scale approach and estimate
the gradient of the bone images successively from coarse
to fine scales. The authors show that using a large number
of filters leads to improved results. The soft tissue images
produced are visually highly convincing, and the technique
can also be applied to radiographs from different sources [17].
In Section IV-A, we show that much less data is required for
training a convolutional network for bone suppression.

B. Unsupervised Methods

None of the supervised methods combined suppression of
normal structure with the evaluation on a texture classifica-
tion problem. Hogeweg et al. [11] presented a rib subtrac-
tion technique based on PCA modeling of rib profiles, and
evaluated it using the performance of a system classifying
image patches containing textural abnormalities. Fitting these
profile models to the data and subtracting them resulted in
reasonably convincing rib suppression, but it was applied to
the posterior ribs only. In their next work, Hogeweg et al.
[12] proposed blind source separation techniques together
with outlier identification to estimate an intensity model of
the unwanted structures and subsequently remove it from the
original image. The method was evaluated on three tasks
(removing ribs, clavicles, and catheters in chest radiographs)
and showed a reduction of the conspicuity.

Simkó et al. [10] suppressed clavicles by creating a bone
model from a gradient map smoothed along the clavicle border
direction, after which a clavicle free image was created by
subtraction of the model. They showed promising results of
clavicle suppression on reducing false positives in a nodule
detection task, but applied it only to the lateral part (diaphysis)
of the clavicle.

The decomposition of the thorax presented by von Berg
et al. [14] comprises the automatic delineation of bone con-
tours with the help of dynamic programming and a suppression
method. According to the segmentation accuracy, suppression
worked relatively better for posterior rib parts and for the cen-
tral ribs. The method responded very robustly to segmentation
errors.

We treat bony structures in CXRs as noise, and the bone
suppressed image as a clear denoised image. We should,
therefore, use some image denoising techniques. Jain and
Seung [18] proposed image denoising using convolutional
neural networks. It was observed that using a small sample of
training images, one can achieve performance at par or better
than state-of-the-art methods based on wavelets and Markov
random fields.

Denoising autoencoders are a recent addition to image de-
noising literature. They easily outperform conventional denois-
ing methods and are less restrictive for specification of noise
generative processes. Vincent and Larochelle [19] introduced
stacked denoising autoencoders as an extension to classic
autoencoders. They form a deep network by feeding the output
of one denoising autoencoder to the one below it. Reviewed
by Gondara [20], stacked denoising autoencoders showed the
reliable results even on small training datasets.

Agostinelli et al. [21] experimented with adaptive
multi-column deep neural networks for image denoising, built
using combination of stacked sparse autoencoders. This system
was shown to be robust for different noise types. Denoising
autoencoders constructed using convolutional layers have bet-
ter image denoising performance for their ability to exploit
strong spatial correlations.

Our methods comprise denoising properties of stacked
autoencoders and learning properties of deep convolutional
networks. We avoid dependency on intermediate segmentation
results, and use a small sample of DES images for training.
We present a novel image comparison technique that makes a
strong impact on convergence of a learning process and overall
performance of bone suppression methods.

III. PROPOSED FRAMEWORK

The goal of our framework is to feed a CXR image to
the network and produce a bone suppressed image. Moreover,
we propose a loss function that teaches the network (in an
end-to-end fashion) to perform custom denoising on the input
images.

A. Autoencoder-like Convolutional Model

Our first model is a stacked denoising autoencoder (AE).
Model output lacks noise defined by user, and, in case of
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Fig. 1: The architectures of convolutional models: (a) Autoencoder-like model, where image size is twice decreased at every
encoding layer and twice increased at every decoding one. And a (b) Multilayer neural model, where image size is preserved.

CXRs, the model produces the original image without bones.
Overall, the model is a stack of convolutional autoencoders
with encoder and decoder sharing the same but mirrored
weights. Unlike usual denoising autoencoders, the noise is
not normally distributed, and is represented by bony struc-
tures. We define our architecture as AE-like, because we are
doing a reconstruction not of an original image, but of a
bone suppressed, or denoised, one. The model consists of 3
autoencoders, each encoding an image into 16, 32, and 64
neurons, respectively. Figure 1(a) of hourglass shape shows
that image size is decreased twice at every encoding layer
and increased twice at corresponding decoding layers. Firstly,
we optimize the parameters of our model by minimizing
mean squared error between the model output and a corre-
sponding soft-tissue image alone, and, secondly, we minimize
mean squared error (MSE) along with maximizing multi-scale
structural similarity (MS-SSIM) [22] of produced image and
a soft-tissue image (the ground truth). We detail the loss
functions in Section III-C.

B. Multilayer Convolutional Neural Model

The second model is actually a family of CNNs with 3,
4, 5, and 6 layers. The model has no shared weights, and the
hypothesis is that a feature learning process becomes the most
effective when provided with certain volume of learning space
(number of layers and neurons). In other words, we should
discover how much space it needs with the help of the family
of 4 CNN models.

There are 16 and 32 hidden neurons at the 1st and the 2nd
layers, respectively. Then each model of the family has twice
more neurons at its last but one layer than the previous model
had. The last layer is an output layer that produces a set of
bone suppressed images. The 4-layer network has 64 neurons
at the 3rd layer, the 5-layer network has 128 neurons at 4th
layer, and the 6-layer network has 256 neurons at the 5th layer.
The 6-layer network is shown in Figure 1(b). Image size is
preserved through all the layers of CNNs. We optimize the

parameters of models by minimizing MSE and maximizing
MS-SSIM of the model output and the ground truth.

C. Loss Functions

Our goal is to train a network that learns how to remove
the bone structures from the CXR without introducing artifacts
to it. To achieve this goal, our approach is to reduce the
reconstruction error from the denoised image to its original
counterpart, and to maximize a structural index to maintain
sharpness.

We have found that a correct choice of a loss function has
a strong effect on the reconstruction results. Thus, we explore
different configurations to find the best loss function for our
denoising framework. For an error function E , the loss function
of an image I can be written as

LE(I) =
1

N

∑
i∈I
E(i), (1)

where N is the number of pixels in the image I , and i is an
index of a pixel in the image I .

MSE, also called `2, is de facto standard error function for
reconstruction. It penalizes larger errors, but is more tolerant to
small ones. MSE treats pixels separately and is not influenced
by their local neighborhoods. Since MSE does not capture the
intricate characteristics of the human visual system (HVS), we
define the loss function for E := `2 as

L`2(I) = 1

N

∑
i∈I

(
I(i)−G(i)

)2
, (2)

where i is the index of a pixel, I is the original image, and G
is the ground truth image of I .

Due to the limitations of MSE, another popular
reference-based index is the structural similarity index
(SSIM). It evaluates images accounting for sensitivity of the



HVS to changes in local structure [23]. SSIM for pixel i is
defined as

SSIM(i) =
2µI(i)µG(i) + C1

µI(i)2 + µG(i)2 + C1
· 2σIG(i) + C2

σI(i)2 + σG(i)2 + C2
,

(3)
= l(i) · cs(i), (4)

where {µI(i), σi(i)} and {µG(i), σG(i)} are the pairs of mean
and standard deviation for a local neighborhood centered at
pixel index i of the given image, I , and its ground truth,
G, respectively; σIG(i) is the covariance of both local neigh-
borhoods; C1 and C2 are two variables to avoid division by
zero. Note that we omitted the dependence of means and
standard deviations on pixel i. Means and standard deviations
are computed with a Gaussian filter with standard deviation
σG . Since SSIM is inspired in the HVS, its terms represent
the comparisons between luminance, l, contrast and structure,
cs , measurements in the local neighborhoods.

Wang et al. [22] proposed MS-SSIM, a multi-scale version
of SSIM that weighs SSIM computed at different scales
according to the sensitivity of the HVS, and experimental
results have shown the superiority of SSIM-based indexes over
`2. Given a dyadic pyramid of M levels, MS-SSIM is defined
as

MS-SSIM(i) = lαM (i) ·
M∏
j=1

cs
βj

j (i), (5)

where lM and csj are the luminance, contrast and structure
terms defined in (4) at scale M and j, respectively. For
convenience, we set α = βj = 1, for j = {1, . . . ,M}, as
suggested by Wang et al. [22]. The loss function based on
MS-SSIM can be then written setting E(i) = 1−MS-SSIM(i),
such as

LMS-SSIM(I) =
1

N

∑
i∈I

1−MS-SSIM(i). (6)

Zhao et al. [24] showed that SSIM and MS-SSIM do not
perform as well as mean absolute error, also called `1. They
also concluded that the combination of MS-SSIM and `1 yields
the best trade-offs. However, MS-SSIM preserves the contrast
in high-frequency regions better than the other loss functions
they experimented with. On the other hand, `1 preserves colors
and luminance (an error is weighed equally regardless of the
local structure) but does not produce quite the same contrast
as MS-SSIM.

The MSE function is convex and differentiable, which
are much better properties for optimization purpose than
`1 function has. Being insensitive to small changes, `2 is
balanced by MS-SSIM loss that pays attention primarily to
local neighborhood changes. We chose the combination of
MS-SSIM and `2 as our loss function:

LMix = α · LMS-SSIM + (1− α) · L`2 , (7)

where we omitted the dependence on image I for all loss
functions, and we set α = 0.84 as Zhao et al. [24] empirically
derived.

IV. EXPERIMENTS AND RESULTS

A. Data Acquisition and Preprocessing

Our data is represented by 35 pairs of chest radiograph
and its soft-tissue versions. Most of the soft-tissue images are
results of dual-energy subtraction. All the data was acquired
from different online sources. We provide this dataset for
educational purposes by request.

Using combined affine transformations we augmented 4000
image pairs from 35 initial ones. The transformations include
rotations, horizontal and vertical shifts, shear, zoom, intensity
shifts, and horizontal flips. Images were cropped to square
form and resized to the size of 440 × 440 pixels. We apply
the contrast limited adaptive histogram equalization (CLAHE)
for local contrast enhancement, so local details can therefore
be enhanced even in regions that are darker or lighter than
most of the image. Images were standardized by centering to
the mean and scaling to unit variance. Pixel values were scaled
to the [0, 1] range.

B. Deep Learning Properties

The type of each layer of our architectures is convolutional.
Size of the filters used for convolution remains the same for
all of the models and layers: 5 × 5. The strides of AE-like
model are [1, 2, 2, 1], and the strides of CNN family models are
[1, 1, 1, 1]. The activation function of each layer is Rectified
Linear Unit (ReLU). Further we describe details common for
all of our models.

1) Training Phase: All the weights values are initialized by
normal distribution with mean µ = 0 and standard deviation
σ = 0.02. We use the Adam algorithm as a learning algorithm.

The initial learning rate is 0.001. We chose the small number
of epochs of training for an experiment purpose, and learning
rate therefore remains unchanged. It will be decreased by 25%
each 100 epochs when the training continues.

Training data is loaded into a queue which keeps a minimum
of 4000 images after dequeue assuring the good shuffle quality.
Images are read in batches of 5 images, and 800 batches are
processed during an epoch.

The stopping criteria is represented by a fixed number of
epochs: for the experiment purpose we train models for only
150 epochs.

2) Test Phase: Test dataset consists of 10 pairs of images
that are not derived from each other at the stage of augmenta-
tion. Train dataset consists of the rest of the images acquired
at the data augmentation phase in Section IV-A.

3) Implementation: We used GPU version of TensorFlow
framework [25] for data processing, model implementation
and training, and Keras framework [26] for data augmentation.
NVIDIA GeForce GTX 980M GPU with 4GB of VRAM was
used as a main computing unit.

C. Training and Testing

The results of application of different models described
below to a test image are presented at Fig. 2. The loss function
values of the whole test dataset are shown at Fig. 3.
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Fig. 2: Results of our proposed models when applied to (a) the original image. Images produced by applying the CNN with
(b) 4 layers, (c) 5 layers, and (d) 6 layers, and (e) the AE-like model. Compare them against (f) the soft-tissue image (ground
truth).
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Loss

AE-like Model (MSE only)

3-Layer CNN (MS-SSIM only)

3-Layer CNN (Mix Loss)

4-Layer CNN (Mix Loss)

5-Layer CNN (Mix Loss)

AE-like Model (Mix Loss)

6-Layer CNN (Mix Loss)

MSE Loss (scaled)

MS-SSIM Loss

Fig. 3: Losses of different models. MSE loss values are 20 times scaled. MS-SSIM loss preserves its values. Smaller is better.



First of all, we ran the AE-like model with MSE loss (2).
The loss showed 0.0035. The produced images had hardly
noticeable bone shadows. The bones were suppressed but
most of the lung nodules were blurred. The images lacked
sharpness.

The simple convolutional neural network with 3 layers and
16 hidden neurons at the first layer, and 32 hidden neurons at
the second layer was the first in the family of tested CNNs.
MS-SSIM loss (6) was chosen to be tested next. SSIM-based
index provided sharp images but reached MS-SSIM loss of
only 0.2277. The produced images were clearly readable, but
had all the bone structures present.

We considered the problem of choosing another loss func-
tion to be the most important. The decision was made to
combine the best of both worlds: MS-SSIM index and MSE.
We tested AE-like model again but this time with combination
of loss functions (7). The model reached MS-SSIM loss of
0.1035 and MSE of 0.0013. The produced images were much
more clearer. The bones were hardly noticeable—as shown in
Fig. 2(e).

The same combination of MSE and MS-SSIM loss functions
was used for training the 3-layer CNN. The MS-SSIM loss was
0.2049, and MSE was 0.0051. The bones were still present,
and overall image was slightly blurred. The AE-like model
performed better than 3-layer CNN.

We decided to add a convolutional layer and increase the
number of its hidden neurons. We increased the depth of the
network to give the CNN more space for feature learning. The
4-layer CNN with 64 neurons at the 3rd layer was trained and
produced an image set with MS-SSIM loss of 0.1787 and MSE
of 0.0044—as shown in Fig. 2(b).

The 5-layer CNN with 128 neurons at the 4th layer was
trained and produced an image set with MS-SSIM loss of
0.1065 and MSE of 0.0019. It was an important leap com-
paring to AE-like model. The bones were hardly noticeable
while lung nodules reproduction was the best of all the
experiments—as shown in Fig. 2(c). The model was still un-
acceptable for lung disease analysis because of some missing
nodules and blurred areas. With 5-layer CNN we achieved the
same results as with the AE-like model.

The 6-layer CNN with 256 neurons at the 5th layer was
trained and produced an image set with MS-SSIM loss of
0.0714 and MSE of 0.0011. The images were completely bone
suppressed and sharp, and all the soft-tissue elements were
preserved—as shown in Fig. 2(d). The 6-layer model is ready
to be used for lung disease analysis.

V. CONCLUSION

In this paper we evaluated two models: AE-like and CNN,
and three different loss functions to maintain the content
of the image (while keeping it sharp). Both models gave
some workable results only after applying a correct loss
functions combination. A deeper research in the area of image
comparison with optimization friendly properties should result
in more effective and precise metrics.

The successful use of an autoencoder-based model with
a denoising loss function shows that extracted features can
be used to reproduce images without not only normally
distributed noise, but any components that are treated as a
noise.

The consecutive increase of number of convolutional layers
and number of neurons at these layers shows the dependency
of image production quality on learning space provided to
the model. The later experiments will define the parameters
needed for such dependence to effectively converge.
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[10] G. Simkó, G. Orbán, P. Máday, and G. Horváth, “Elimi-
nation of clavicle shadows to help automatic lung nodule
detection on chest radiographs,” in 4th European Con-



ference of the International Federation for Medical and
Biological Engineering, 2009, p. 488491.

[11] L. E. Hogeweg, C. Mol, P. A. de Jong, and B. van
Ginneken, “Rib suppression in chest radiographs to im-
prove classification of textural abnormalities,” in Proc.
SPIE 7624, Medical Imaging 2010: Computer-Aided
Diagnosis, 76240Y (March 09, 2010), 2010.

[12] L. Hogeweg, C. I. Sanchez, and B. Van Ginneken, “Sup-
pression of translucent elongated structures: Applications
in chest radiography,” IEEE Transactions on Medical
Imaging, 2013.

[13] J. Von Berg, S. Young, H. Carolus, R. Wolz, A. Saalbach,
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