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Abstract

Vision Transformers naturally accommodate sparsity, yet
standard tokenization methods confine features to discrete
patch grids. This constraint prevents models from fully
exploiting sparse regimes, forcing awkward compromises.
We propose Subpixel Placement of Tokens (SPoT), a novel
tokenization strategy that positions tokens continuously
within images, effectively sidestepping grid-based limita-
tions. With our proposed oracle-guided search, we un-
cover substantial performance gains achievable with ideal
subpixel token positioning, drastically reducing the number
of tokens necessary for accurate predictions during infer-
ence. SPoT provides a new direction for flexible, efficient,
and interpretable ViT architectures, redefining sparsity as a
strategic advantage rather than an imposed limitation.

1. Introduction

Sparsity—the fine art of doing more with less—is an at-
tractive prospect in systems design and modeling. As mod-
els grow ever larger, sparse features alleviates the com-
putational demands of a model to provide lower latency,
lower memory overhead, and higher throughput—all im-
portant properties for real-time applications. Incidentally,
sparse selection of features offers inherent interpretabil-
ity and transparency for increasingly complex models [1].
Clever adaptations of the Vision Transformer (ViT) [2] ar-
chitecture have shown that this family of models can han-
dle sparse inputs remarkably well [3—7], accelerating infer-
ence by selectively processing a reduced subset of the in-
put. Sparsification has even indirectly inspired entirely new
paradigms for efficient unsupervised training in the form of
masked image modeling (MIM) [8—10].

However, in carefully studying the fine print of Dosovit-
skiy et al.’s [2] work, one notes an insistence on aligning
features with an underlying grid, mirroring the structure in-
herited by its language counterpart [11, 12] where inputs are
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Figure 1. (Left) A standard ViT splits the image into a fixed grid of
non-overlapping patches. (Right) With SPoT, an adaptively cho-
sen subset of subpixel-precise patches are extracted.

naturally represented as sequences of discrete tokens. This
discretization might seem natural—after all, are not pixels
fundamentally discrete? Our hypothesis is that this adher-
ence turns sparsity into an awkward dance; forcing the se-
lection of entire tiles, even if the true optimal feature set
hides in-between rigid lines. Like eating soup with a fork:
possible, but decidedly inefficient and frustrating.

We propose a simple remedy with Subpixel Placement
of Tokens (SPoT). By allowing patches to occupy contin-
uous subpixel positions instead of constraining features to
a discrete grid, we expand our modeling toolkit to include
gradient based search and sampling for discovering optimal
sparse feature sets. Figure | succinctly illustrates the core
idea, while the example in Figure 2 shows the limitations
of a discrete grid-based approach in reducing tokens while
preserving predictive quality. Our contributions include:

* We propose SPoT, a novel tokenization framework plac-
ing features at continuous subpixel positions, signifi-
cantly enhancing the robustness and efficiency of ViTs.

* We introduce Oracle-guided Neighbourhood search
(SPoT-ON) to empirically quantify optimal subpixel po-
sitions, showing that carefully selected sparse placements
outperform dense grids with only ~ 12.5% of the orig-
inal tokens, and that regions discovered with one model
improve performance in another.

* We systematically investigate spatial priors for subpixel
token placement, and find that dense regimes prefer cov-
erage, while sparse regimes benefit from center bias and
saliency-driven priors.
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Figure 2. Grids cannot align every salient region. (a) A5 x 5
patch grid (gray) with three optimal region placements for sparse
feature selection. The patch is well aligned (A),
straddles two cells (B), and red lies on a corner (C) and leaks
into four cells. Translating the grid only swaps which peak is
misaligned—one patch is always bad. (b) Our subpixel tokenizer
drops fixed-size windows ( squares) directly on each peak,
eliminating the alignment trade-off while still allowing conven-
tional grid tokens when they are well aligned.

2. Sparse Visual Bag-of-Words and ViTs

At first glance it might seem like a ViT is designed to
process an image globally via partitioning an image into
patches. However, there is nothing in the transformer ar-
chitecture that requires a discrete partition. Because self-
attention is permutation-invariant, a ViT encoder effectively
treats its input tokens as an unordered multiset; a visual bag-
of-words, analogous to BERT [12]. This observation sug-
gests we need not restrict tokens to a grid, leading to our
formulation of sparse feature selection for ViTs.

We denote a ViT encoder as gg: Z x Q) — R4, where
T is a dataset of source images, and €2 is a space of po-
sitions from which to sample image features. For exam-
ple, with standard tokenization (g is a fixed, discrete set
of non-overlapping square patches tiling the image with a
fixed window size on a grid of pixels. The sparse feature
selection (SFS) problem can then be formulated as

m(gnESdi) [L(go(1,5),y)] st. SCQ, |S|<|Q. (1)

In other words, we are looking for a probability distribu-
tion pg over subsets of 2 that minimizes a loss function L.
We note that for the discrete non-overlapping case of {)griq,
there is an implicit assumption that sampling of S is done
without replacement, since sampling the same feature more
than once is unlikely to improve model performance. Three
specific issues arise from the ViT sparse sampling problem;
1. Interdependence: Transformers process tokens as a set.
This means that the marginal distribution of one token is
dependent on the inclusion of other tokens. Furthermore,
the optimal distribution pg for a given image may vary
depending on the choice of number of tokens.

ITypically standard cross-entropy is used for £.

2. Combinatorial search: The discrete nature of (g
means that selecting a subset of tokens is combinatorial
knapsack problem. This makes search difficult and gra-
dient methods intractable, particularly since cardinality-
constrained subset selection is NP-hard [13].

3. Misalignment: By quantizing patches to a fixed grid,
key patterns for discriminating an image could be missed
in SFS. Concretely, if the grid imposed by (g is
misaligned with key features in the image, SFS could
be challenging, as a central shape or texture may be
spread over multiple patches, making subset selection
more challenging.

These issues hinder efficient optimization of SFS under

standard tokenization.

3. Subpixel Placement of Tokens: SPoT

We propose a more flexible tokenization scheme to
tackle SFS problems in ViTs. Instead of consider-
ing € as a fixed discrete partition, we instead imagine
Qqubpix = [0, H — 1] x [0, W — 1] as a continuous space of
subpixel positions from which to select features within a
H x W image. Put simply, we parametrize a subset of
positions S = {s1,...,8,} as a set of points of interest
from which to extract features from within an image. By
sampling tokens from continuous subpixel positions, our to-
kenizer directly addresses the intrinsic misalignment issue
imposed by traditional grid-based methods, as illustrated in
Figure 2. To tackle the combinatorial search problem, we
use a bilinear interpolation function ¢ and window size k,
each subpixel position s; = (h,w) provides an extracted
feature

I(sisk)=I,(h—5:h+ %5 w— 2w+
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This allows us to formulate SFS as a continuous, probabilis-
tic optimization problem rather than an intractable discrete
subset-selection. The key insight is that our novel tokenizer
allows us to (1) investigate placing different priors on py,
and (2) use gradient based optimization to search for S by
way of gradients through I,,. Since we select g to be bilin-
ear, its partial derivatives w.r.t. s exist everywhere except at
pixel boundaries, so gradients propagate cleanly back to the
placements {s1, ..., S, . We note that subpixel tokens do
not impose any constraint on non-overlapping patches.

Since Qgria € Qubpix» Patch tokenization is just a special
case of our tokenization method. This means that models
can be evaluated with the exact same features as a standard
patch-based ViT by letting S = {g9. Our tokenizer ex-
tends existing work showing that more generalized tokeniz-
ers can be constructed to be modularly commensurable to
standard ViT models, and we adopt their kernelized posi-
tional embedding [14].
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Figure 3. Different sampling priors which can be employed with SPoT. The Sobol prior (not figured) produces uniform quasirandom

placements with explicit constraints on coverage.

3.1. Spatial Priors

By allowing subpixel freedom in token placement, we lose
the implicit spatial prior that discrete grids naturally encode.
Hence the shift to a continuous domain raises a dilemma:
in sparse regimes, what should guide our choice of token
positions? An appropriately selected prior enables effi-
cient sparse representations while preserving performance,
whereas an ill-suited one may lead to substantial degrada-
tion. We compare several spatial priors, each encoding dif-
ferent assumptions about feature importance and spatial dis-

tribution, illustrated in Figure 3:

e Uniform: randomly samples locations with no spatial
bias, assuming all regions are equally important.

¢ Gaussian: randomly samples locations with a central
bias, which encodes a prior belief that subjects are typ-
ically centered in images.

* Sobol: provides quasirandom sampling aimed at uniform
coverage while reducing overlap [15].

¢ Isotropic: deterministically distributes tokens evenly in a
subpixel grid, emphasizing coverage.

* Center: deterministically distributes tokens evenly with
slight central-bias, commonly seen in classification
datasets [16].

 Salient: encodes object-centric bias by placing tokens
based on regions identified as visually salient from a pre-
trained saliency model [17].

Moreover, we highlight that a prior could be learned to suit a
particular problem. However, we note that interdependency
requires a more complex parametric family than a univariate
spatial distribution. We therefore leave this step as future
work, and focus on the proposal of the continuous positions
of tokens and its evaluation.

3.2. Oracle Neighborhoods: SPoT-ON

In addition to investigating spatial priors, we also look to
directly explore differentiable optimization for token place-
ment. To probe for ideal choices of S = {s1,...,5m},
we optimize a constrained version of the SFS problem (1)
directly for each image. We freeze the encoder gy, and di-
rectly apply gradient search to optimize

arg min [E(gg(I,S),y)] s.t. S C Qqubpix, [S]=m  (3)
s

for a set number of tokens m with initial positions S ~ p,
sampled from a chosen prior ps. This provides an Oracle
Neighborhood (ON) adjustments of the initial placements
for SPoT. SPoT-ON reveals ideal locations for classifying
each image, which allows us to ascertain the existence of
an optimal set of positions S for each image, and estimate
an upper bound on performance gain from effective token
sampling. We specify that SPoT-ON incurs a higher com-
putational cost for classification, and is not intended as a
practical solution for inference. Rather, it acts as a tool for
analyzing the nature of sparse ViTs, demonstrating the po-
tential of learnable token positions.

4. Experiments: Case Studies

We examine SPoT by adapting two standard ViT mod-
els [18], trained on ImageNet-21k and ImageNet-1k (CLS-
IN21k, CLS-IN1k) and a self-supervised Masked Autoen-
coder (MAE-IN1Kk) [8]. All models utilize the ViT-B/16 ar-
chitecture [2]. Supervised models initialize weights from
TIMM [19], while MAE uses official pre-trained weights.
To integrate our subpixel tokenizer, each model undergoes a
50-epoch retrofitting step on ImageNet-1k [20], after which
the MAE-based model is further fine-tuned for classification
over 100 epochs, aligning with its original protocol [8]. Ad-
ditional details in Section 5.2. We explore the effectiveness
and properties of our approach through four targeted case
studies addressing grid limitations, object-centric priors,
oracle guidance preferences, and transferability of guided
placements.

4.1. Are Grids an Inherent Limitation of ViTs?

In our first case study, we investigate whether moving
away from fixed-grid token representations toward subpixel
placements in continuous space enhances representational
quality. Traditional grid-based representations restrict to-
kens to fixed intervals, which often require multiple patches
to cover important features adequately, as illustrated in Fig-
ure 2. Subpixel placement, on the other hand, allows tokens
to align precisely with these features, potentially enabling
more efficient representations with a sparse set of tokens.
To investigate grid versus off-grid representations, we
design an experiment using SPoT-ON to directly compare
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Figure 4. Tllustration of oracle placements with 25 tokens with SPoT-ON. By optimizing our oracle-neighborhood search (3) all the way
through the model, the oracle discovers optimal placement of points, yielding an accuracy of 90.9% on ImageNet1k with only ~ 12.5%
of the tokens. Trajectories are colored starting with dark purple for initial points, with endpoints colored

Table 1. Accuracy of grid-constrained and off-grid patch represen-
tations in extreme sparse setting with 12.5% of tokens. The grid-
based configuration mimics the discrete patch selection of stan-
dard ViTs. The oft-grid configuration permits subpixel placement
in continuous space. Results demonstrate that allowing continuous
positioning enhances representational quality under sparse token
regimes. We also report the performance of the initially sampled
points without oracle supervision (SPoT).

Method Ir Steps Acc@1 (%)

SPoT - - 61.7
Grid

SPoT-ON  3e-3 5 66.2
SPoT-ON le-2 10 74.0
Subpixel

SPoT-ON  3e-3 5 90.2
SPOoT-ON 1le-2 10 90.9

continuous subpixel placement with discrete, grid-based
positioning, all under a fixed token budget of 12.5% of
the standard 196 in ViT-B/16 architectures. For the dis-
crete setting, the learned subpixel positions were mapped
to their nearest locations on a standard 14 x 14 token grid,
mimicking a conventional ViT configuration. We consider
two optimization configurations: one with a learning rate
of 3 x 10~ over 5 optimization steps, and another with a
higher learning rate of 1 x 10~2 over 10 steps.

The results in Table | clearly demonstrate the advan-
tage of subpixel placement, which achieves at least a 16.9
percentage point improvement in accuracy over the grid-
constrained method. Interestingly, increasing both the
learning rate and the number of optimization steps allows
the grid-based approach to discover more effective token
positions. Nevertheless, the constraints of discrete, grid-
based positioning hinders performance, even under more
aggressive optimization. The consistent performance gains
highlights significant benefits of continuous, subpixel token
placement in resource constrained settings.

Finding 1: Off-grid token placement enables greater
flexibility and yields substantially better performance
than grid-based approaches under sparse token settings.

4.2. Do Object-Centric Priors Improve Predictions?

To investigate spatial priors and how they interact with ora-
cle supervision in the sparse setting, we initialize our adap-
tive sampler using the spatial priors introduced Section 3.1.
Each initialization defines the starting coordinates S° of to-
ken placements, which are subsequently refined by SPoT-
ON to minimize classification loss with a learning rate of
3 x 1073 over 5 optimization steps.

Table 2 reports the resulting downstream accuracy for
both supervised and self-supervised backbones in the sparse
setting with a token budget of 25 tokens (12.5% of original).
We observe that sampling from saliency heatmaps yields
the highest performance both out-of-the-box and after ora-
cle supervision. This aligns with common intuition, object-
centric features are more relevant to the classification task.
The center grid prior also shows higher performance, very
likely due to the center bias in ImageNet images. Finally,
grid-based initializations (e.g., regular grid, center grid, and
Sobol) consistently lead to higher accuracy than the uni-
form random and Gaussian-stochastic priors, as these result
in overlapping placements that are less efficient than struc-
tured alternatives.

Comparing these results to Table 5, we see that the ben-
efit of object centric sampling disappears for higher token
budgets. Instead, the best performing prior is the regu-
lar grid, which ensures broad spatial coverage rather than
concentrating solely on the object. This reveals a surpris-
ing inductive bias—coverage is more critical than object-
centricity for classification under high token budgets. We
hypothesize that this is because the information provided by
object-focused features quickly saturates, and with higher
token budgets the model benefits from the broader context
provided by even coverage of the image.



Table 2. Accuracy (%) for different spatial initialization priors
in extreme sparse setting with 25 tokens. We show out-of-the-
box SPoT performance (Acc@1) and achievable increase in per-
formance using SPoT-ON (Oracle A).

Prior k-NN (%) Acc@1 (%) Oracle A
SPoT CLS-IN21k

Uniform 45.234+0.10 44.05 134.22
Gaussian  45.27+0.10 4522 132.83
Sobol 46.48+0.20 43.67 135.83
Isotropic  48.19 46.85 134.85
Center 52.18 52.45 131.07
Salient 56.83+0.26 55.71 131.90
SPoT MAE-IN1k

Uniform 49.7240.13 56.71 131.44
Gaussian  49.4940.33 57.58 129.63
Sobol 53.54+0.39 60.62 129.40
Isotropic  54.56 61.72 129.21
Center 55.61 62.83 126.70
Salient 60.80+0.08 66.13 126.59

Finding 2: Object-centric priors yield higher perfor-
mance in sparse regimes. In dense regimes, even and
structured coverage provides better performance.

4.3. Does Oracle Guidance Prefer Salient Regions?

Intuitively, object-centric priors should help a classifier, but
do they actually steer our oracle-guided tokenizer? We
investigate whether oracle gradient search in SPoT-ON
moves tokens towards pixels with higher class saliency.

We design an experiment as follows; starting with a
isotropic prior, we optimize trajectories s(*. . . ., s() via or-
acle gradient search (3). Our goal is to measure the shift of
token placements toward higher-saliency regions between
the initial position s(°) and the final position s(*). Given a
saliency mask M, we compute a score for placements s by

score(s) = 15 D My(s: K)i )

The relative saliency gain for each trajectory is given by

score(s)) — score(s(?))

RSG = &)

score(s())

Table 3 shows the result of averaging relative saliency gains
over ImageNetlk, showing that there is a slight gain in
saliency scores for each of our three models. However,
the results are not significant enough to claim that saliency
alone guides the placements during the oracle search.

We illustrate four examples with different trajectories in
Fig. 4, which sheds more light on the behavior of SPoT-
ON. While trajectories are drawn to discriminative regions,
such as spots on a ladybug (left) or hands of a clock (center
right), other placements seem more arbitrary, and even loop

Table 3. Quantitative analysis on object-seeking behaviour with
SPoT-ON. For each region, we compute the average saliency in a
16 x 16 window centered on each point. We compare the saliency
scores of initial placements compared to oracle placements, and
compute the relative saliency gain (RSG) over ImageNet1k.

RSG (%)
Backbone 25 Tok. 49 Tok. 100 Tok. 196 Tok.
CLS-IN21k 10.34 10.33 10.47 10.14
CLS-IN1k 10.77 10.77 10.75 $1.53
MAE-IN1k 10.49 10.54 10.51 10.08

back on themselves. The oracle often positions tokens close
to—rather than on—the object; providing context that self-
attention can exploit. Hence, inferdependency rather than
saliency alone, drives the final placements.

Finding 3: While oracle gradient search yields a slight
bias toward higher-saliency pixels, the results are not
highly significant. The results suggest that token inter-
dependency — as opposed to pure object saliency — is
a predominant factor for optimal placements.

4.4. Do Oracle Guided Placements Transfer?

If discovered token placements with oracle guidance cap-
tures structure rather than model-specific quirks, a place-
ment learned by one model should benefit another. To
test this, we investigate transferability of token placements.
Given two independently trained models, g4, gp, we in-
dependently optimize two feature sets; Sa,Sp respec-
tively (3). Both feature sets are initialized with the same
isotropic spatial prior Sy. Then, for target labels y, we com-
pute the difference in accuracy from the initial placements
Sp to the optimized placements with the alternate model,
ie.,

A =E[ga(l,S) =y| —Elga(l,Sp) =y], (6)

with symmetrical computations for model g on S4. The
results can be found in Table 4. Our experiments show that
placements discovered with one model transfers to yield
improvement in performance in a different, independently
trained model.

Finding 4: Discovered positions via SPoT-ON general-
ize between models; a set of placements optimized via
one model will improve results with another indepen-
dently trained model in sparse regimes.

5. Extended Experimental Results

We present the performance of SPoT under varying spar-
sity configurations and compare it against baseline models,



Table 4. Transfer properties of SPoT-ON positions between mod-
els, in the sparse setting with a 12.5% token budget. We optimize
oracle positions using gradient optimization for a source model,
initialized with the isotropic prior. We then evaluate the discov-
ered points in an independently trained target model. Each model
sees a significant increase in performance, even from points de-
rived from an independent model.

Acc@1 (%) (25 Tokens)

Source — Target Original  Transfer A

CLS-IN1k — CLS-IN21k 46.85 54.06 117.21
MAE-IN1k — CLS-IN21k 46.85 56.71 19.86
CLS-IN21k — CLS-IN1k 33.52 3791 14.39
MAE-IN1k — CLS-IN1k 33.52 39.19 15.67
CLS-IN21k — MAE-IN1k 61.72 68.50 16.78
CLS-IN1k — MAE-IN1k 61.72 67.81 16.09

including the supervised backbones from TIMM [19] and
the officially fine-tuned MAE model [8]. For clarity, all
baselines are denoted as ViT-B/16 in Table 5. To evaluate
the baselines under sparsity constraints, we apply Patch-
Dropout [3], which randomly drops input patches during
inference.

The results in Table 5 reveal several noteworthy observa-
tions. First, the self-supervised MAE model [8] consistently
outperforms its supervised counterparts under sparse con-
figurations. This advantage is likely due to its pre-training
objective, which inherently involves reconstructing inputs
from partial observations, thereby fostering robustness to
patch dropout. Second, we observe that under full-token
conditions, SPoT achieves marginally higher performance
than both the supervised and self-supervised baselines. This
suggests that even in dense settings, additional gains can be
realized by leveraging the flexibility introduced by subpixel
representations. Third, as the level of sparsity increases,
SPoT consistently surpasses all baselines, regardless of spa-
tial prior. Notably, performance is further improved with
priors that promote spatial coverage, compared to stochas-
tic uniform sampling, which demonstrates the importance
of an appropriate token placement scheme under sparsity
constraints.

In Figure 5 we show image throughput versus accuracy,
comparing SPoT with the baselines across varying sparsity
levels. As sparsity increases, throughput improves signifi-
cantly, albeit with an associated trade-off in accuracy. No-
tably, SPoT achieves the most favorable trade-off, maintain-
ing substantially more of the full-model accuracy while en-
abling higher throughput than competing approaches. Fur-
ther, we observe only slight variation in throughput between
the models at each sparsity level, indicating that SPoT in-
curs very minimal computational overhead compared to
baselines. We also include our oracle-guided variant SPoT-
ON in the figure, which illustrates a ceiling on achievable
performance when placements are ideally sampled.

o 25 O s () 100@ 196 Tokens

—e— CLS-IN21k —e— CLS-IN1k —e— MAE-IN1k —— SPoT ---+-- SPOT-ON
100

98

N L ARSESEEE S B
o
80 -

Accuracy (%)

60 -

40

|
0 5 10 15 20 25 30 35

Throughput (k img/s)

Figure 5. We show ImageNetlk accuracy vs. throughput with 5
models at four sparsity levels. The denotes performance
unlikely to be achieved given the intrinsic label noise in Ima-
geNet [21]. The highlights the margin between SPoT with
optimal configuration and SPoT-ON, illustrating possible perfor-
mance gain through better token placement.

5.1. Robustness and Sensitivity Analysis

To thoroughly validate the semantic relevance of optimized
subpixel token placements, we conduct targeted robustness
analyses. Specifically, we evaluate performance under in-
tentionally adversarial conditions—including inverse priors
favoring irrelevant regions such as backgrounds or image
boundaries, and gradient ascent adversarially maximizing
loss or randomized label assignments. Our results in Ta-
ble 6 demonstrate substantial performance degradation in
all these adversarial scenarios, strongly suggesting that our
token placement mechanism indeed leverages meaningful
semantic cues rather than trivial spatial correlations or eas-
ily exploitable priors.

Importantly, the gradient-ascent oracle still receives
the correct labels, so its sharp accuracy collapse shows
that semantically aligned token positions are indispens-
able—simply keeping the right supervision is not enough
if the tokens are pushed onto irrelevant regions. In con-
trast, the near-chance performance under label-obfuscation
demonstrates that the model does not easily adapt to ar-
bitrary image—label pairings, confirming that our selec-
tor grounds predictions in genuine object evidence rather
than flexible location—label shortcuts. Background sam-
pling leads to reduced performance; however, we posit that
the token set still captures some object edges, providing
the model with useful information. This hypothesis is re-
inforced by the significantly larger performance drop ob-
served when sampling with a strong bias toward image
boundaries. Adversarial optimization shows a similarly ex-
treme drop, indicating that good token placements are not
trivial.



Table 5. Classification top-1 and kNN accuracies for supervised and and self-supervised models using different token priors. We find that
center-bias in spatial priors is beneficial in sparse regimes, while coverage becomes more important as token budgets increase.

25 Tokens 49 Tokens 100 Tokens 196 Tokens

Model Prior Oracle Acc@1 kNN Acc@1 kNN Acc@1 kNN Acc@1 kNN
Backbone: CLS-IN21k

ViT-B/16 Patch Grid 24.72 27.86 56.29 57.19 78.75 78.77 85.11 83.96
SPoT-B/16 Uniform 44.05 4523 67.77 66.38 79.64 78.03 83.76 81.85
SPoT-B/16 Gaussian 4522 45.27 68.64 66.96 79.75 77.74 83.45 81.48
SPoT-B/16 Sobol 43.67 46.48 69.02 68.60 81.63 79.35 84.66 82.62
SPoT-B/16 Isotropic 46.85 48.19 70.61 70.29 82.20 80.73 85.15 83.42
SPoT-B/16 Center 52.45 52.18 69.22 68.16 80.84 78.56 84.01 82.23
SPoT-B/16 Salient v 55.71 56.65 72.89 72.38 79.91 80.56 84.56 82.59
SPoT-ON-B/16 Isotropic v 81.70 70.65 94.28 88.58 95.97 92.92 96.12 93.52
Backbone: CLS-IN1k

ViT-B/16 Patch Grid 9.24 12.05 41.05 44.38 71.22 71.41 79.14 77.64
SPoT-B/16 Uniform 29.87 33.88 60.64 60.84 74.44 73.18 79.38 77.36
SPoT-B/16 Gaussian 29.27 33.07 60.47 60.23 74.37 72.82 79.02 77.00
SPoT-B/16 Sobol 30.67 35.23 64.42 63.88 76.45 75.18 79.96 78.17
SPoT-B/16 Isotropic 33.52 37.84 66.18 66.25 77.58 76.29 80.61 79.04
SPoT-B/16 Center 39.91 42.47 63.04 62.65 75.41 73.63 79.32 77.71
SPoT-B/16 Salient v 39.83 43.72 66.32 66.00 74.36 75.25 79.54 78.03
SPoT-ON-B/16 Isotropic v 73.99 74.42 94.21 90.11 95.79 93.61 96.04 93.97
Backbone: MAE-IN1k

ViT-B/16 Patch Grid 55.43 48.85 70.69 67.15 79.53 78.41 83.60 82.07
SPoT-B/16 Uniform 56.71 49.72 73.22 65.85 80.53 74.76 82.78 78.21
SPoT-B/16 Gaussian 57.58 49.49 72.51 65.59 80.31 74.52 82.55 77.90
SPoT-B/16 Sobol 60.62 53.54 75.71 68.71 82.19 76.24 83.51 79.09
SPoT-B/16 Isotropic 61.72 54.56 76.84 70.02 82.76 77.24 83.89 79.53
SPoT-B/16 Center 62.83 55.61 74.63 67.31 81.06 75.20 82.97 78.54
SPoT-B/16 Salient v 66.13 60.80 77.10 72.24 81.46 77.25 81.64 79.13
SPoT-ON-B/16 Isotropic v 90.93 79.73 94.87 87.87 96.09 90.76 96.24 91.28

Table 6. Analysis on harmful spatial priors and adversarial ora- 6. Related Work

cles in sparse regimes. The background prior samples from in-
verse saliency maps; the boundary prior samples with image edge
bias. Ascent shows accuracy under worst-case token placements,
discovered via SPoT-ON. Label obfuscation optimizes placements
for randomized labels. Each case is compared with baseline SPoT
performance using the isotropic prior—the performance drop is
shown to the right of each score.

Acc@1 (%) (25 Tokens)

Backbone  Backgrd.  Boundary Ascent Lab.Obf.
CLS-IN21k  40.80 635 10.6813617 137513300  1.17 14569
CLS-IN1k  20.064 13.46 4.15 12937 5.90 12782 2.681335
MAE-IN1k  31.89;23835  10.8315080  16.5414518  1.11 6061

5.2. Retrofitting and Finetuning Details

Table 7 details the training configurations for the three back-
bone variants: CLS-IN1k, CLS-IN21k, and MAE-IN1k.
The official TIMM [19] model card names are listed below
each corresponding subtable for reference. All protocols
use isotropic sampling and run for 50 epochs on 224 x 224
images on the ImageNet-1k dataset [20]. Layer-wise learn-
ing rate decay (LLRD) is employed with a slightly more ag-
gressive parameter in the MAE retrofitting, while the MAE
finetuning follows the original protocol outlined by He et al.
[8], with minor exceptions?.

2Cosine warmup in Ir-scheduler, starting from 1 x 1077 with peak learn-
ing rate of 1 x 1073, and gradient clipping set to 3.

Leveraging sparsity to reduce computational overhead is a
well-established research direction. Previous work intro-
duced sparsity through masking during pre-training, in self-
supervised [8] and language-supervised contexts [22]. Liu
et al. [3] applied sparsity at the fine-tuning stage by ini-
tially upsampling images and subsequently randomly drop-
ping patches, thus enhancing efficiency and reducing com-
putational complexity. Distinct from training-centric spar-
sity approaches, our work induces sparsity during inference
by retrofitting ViTs with a subpixel tokenizer, significantly
improving throughput. Another line of research explores
inference-time sparsity via selective pruning to either dis-
card [4-6] or merge [7] tokens based on different heuris-
tics. In contrast, our approach achieves sparsity by sampling
rather than selectively pruning tokens during inference.

Recently, other works have explored non-grid based to-
kenization. One interesting line of research looks to lever-
age subobject tokenization, which extracts fine-grained seg-
mentations as opposed to square patches [14, 23]. Other
works apply learnable clustering into the transformer archi-
tecture via cross-attention operators [24, 25], while Nguyen
et al. [26] proposed to tokenize each individual pixel. De-
formable patches was first proposed in relation to object
detection [27], but was further extended to general pur-
pose modeling in ElasticViT [28], which proposed elastic
windows as local augmentations in standard classification



Table 7. Training protocols for retrofitting. We use the same training protocols as He et al. [8] for MAE finetuning.

(a) CLS-IN1k Retrofitting

(b) CLS-IN21k Retrofitting

(c) MAE-IN1k Retrofitting

config value config value config value
sampler isotropic sampler isotropic sampler isotropic
batch size 2048 batch size 2048 batch size 4096
epochs 50 epochs 50 epochs 50

dataset ImageNetlk dataset ImageNetlk dataset ImageNetlk
img.size 224 x 224 img.size 224 x 224 img.size 224 x 224
loss fn. CE (0.1 smooth.) loss fn. CE (0.1 smooth.) loss fn. MSE
optimizer AdamW optimizer AdamW optimizer AdamW
momentum 0.9, 0.99 momentum 0.9, 0.99 momentum 0.9,0.95
Ir.sched. cos.decay (5 w.u.) Ir.sched. cos.decay (5 w.u.) Ir.sched. cos.decay (5 w.u.)
Ir 6e—5 Ir 6e—5 Ir 3e—3
dropout path 0.1 dropout path 0.2 dropout path 0

opt. € le—8 opt. € le—8 opt. € le—8
augment rre / randaug(15, .5) augment rre / randaug(15, .5) augment re

mixup o 0.8 mixup « 0.8 mixup alpha 0.8

cutmix o 1.0 cutmix o 1.0 cutmix 1.0

1lrd 0.65 1lrd 0.65 1lrd 0.75

vitbase.patchl6.224.augreg-inlk

vit-basepatchl6.224.augreg2-in21lk-ft-inlk

Table 8. Comparing ElasticViT to SPoT in sparse regimes.

mae-vit.-base-patchlé-inlk

Acc@1 (%) / Number of Tokens

Model 39 59 78

118 137 157 176 196

ElasticViT 67.17 72.65 7547
SPoT-MAE-IN1k  71.81 77.86 80.47

7747 78.18 79.73 80.81 8131 82.04
81.89 8255 83.05 8334 83.52 83.85

tasks. These are defined as stochastic patch perturbations
in scale, position, and erasure via patch dropout. Put sim-
ply, ElasticViT relaxes the traditional patch grid of ViTs by
randomly shifting, rescaling, and dropping patches during
training.

ElasticViT differs from SPoT in key aspects. First, we
relax the discrete grid assumption not by perturbing exist-
ing patch positions, but rather by directly sampling arbi-
trary continuous-valued points within the image. Conver-
sly, ElasticViT uses discrete pixel positions, and does not
adapt a continuous subpixel approach. Second, we do not
explicitly train our model to handle sparse inputs; instead,
our method’s inherent robustness to sparse token configura-
tions naturally arises from training on continuously sampled
points. Nevertheless, comparing our method to ElasticViT
is insightful, as their approach is explicitly trained to handle
continuous-valued positions and sparse token scenarios. Ta-
ble 8 compares SPoT with ElasticViT’s officially reported
results, demonstrating that SPoT consistently outperforms
ElasticViT across all evaluated sparse configurations.

7. Conclusion

We proposed SPoT for extracting features at continuous
subpixel positions, and used oracle-guided gradient search
to probe the nature of optimal token placements and ideal
spatial sampling priors. Our case studies showed that the
flexibility of continuous off-grid placements improves per-
formance out-of-the-box, especially in sparse token budget
settings. SPoT-ON provided an estimate of best-case per-

formance from optimal token placement. Although place-
ments are guided via an oracle, these optimal features exist
independently of how they were discovered, revealing a per-
formance gap that better informed priors could help bridge.
While we focused on analyzing the effects of subpixel to-
kenization under varying sparsity configurations with dif-
ferent spatial priors, the development of learnable spatial
priors is a next step towards narrowing the oracle perfor-
mance gap. We emphasize that our study with SPoT on dif-
ferent spatial priors focused on classification on ImageNet,
and optimal placements may vary for different datasets and
downstream tasks.

By enabling continuous token positioning, SPoT fa-
cilitates gradient-based optimization of token placement,
which can be advantageous in resource-constrained envi-
ronments where sparsification is beneficial. Although we
limit our scope to employ an oracle to determine opti-
mal token placements, exploring oracle-independent strate-
gies represents a compelling direction for future research.
Specifically, integrating efficient saliency-driven objectives
or heuristics during inference could potentially enhance
throughput efficiency while maintaining competitive perfor-
mance compared to models utilizing a full token budget.
Further improvements may also be seen by allowing the
model to adjust the patch window size dynamically during
training. Moreover, while the scope of this work is towards
modeling in sparse regimes, our results indicate that con-
tinuous subpixel token placements provide a novel research
direction for ViTs on a more general level.
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A. Evaluation Protocol

Our evaluation protocol closely follows existing works [8—
10]. We use bicubic interpolation and a crop ratio of
0.875 in our evaluations. All models are trained with stan-
dard ImageNet normalization, noting that the TIMM base-
lines [19] adopt the convention of using a flat normalization
of puregs = orcs = (0.5,0.5,0.5). Our kNN evaluation
protocol was adapted from Caron et al.’s [29] work.

B. Qualitative Results

We provide additional examples of oracle trajectories in
Fig. B.1, extending the qualitative results in Fig. 4.



Figure B.1. Oracle token trajectories for 30 ImageNet validation examples using our oracle-guided SPoT-ON. Colors transition from
initial dark purple to final bright yellow.
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