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Abstract

In this paper, we propose a novel edge descriptor method
for background modeling. In comparison to previous edge-
based local-pattern methods, it is more robust to noise
and illumination variations due to the use of principal
gradient information in a local neighborhood. For the
background modeling problem, we combined the proposed
method with the Local Hybrid Pattern and experimented
with an adaptive-dictionary-model based background mod-
eling method. We show in the quantitative evaluations that
the proposed methods is better than other local edge de-
scriptors when applied to the same framework. Further-
more, we show that our proposed method is more powerful
than other state of the art methods on standard datasets for
the background modeling problem.

1. Introduction
In video streams captured from a stationary camera, fore-

ground detection is often one of the essential tasks in many
video surveillance systems. Background modeling meth-
ods are commonly used in research as the first step to ex-
tract foreground. The main idea of background modeling is
to compare the current frame with a reference background
model. Despite extensive research related to background
modeling, challenges still remain in this area because of
non-stationary backgrounds. Moving backgrounds, like
waving trees, illumination variation, the addition or re-
moval of foregrounds, cause non-stationary backgrounds
problems. Camera jitter and noise caused by sensor are the
reason that a stable background model is hard to generate.

Pixel-based methods are often used in research to rep-
resent video streams by using the information of pixels,
such as color or intensity. Maintaining the single back-
ground model, like average intensity of pixels, is the sim-
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plest way to detect foregrounds [12]. However, this sim-
ple approach cannot handle moving background because
of its unimodal models (i.e., can model only one condi-
tion). Some researchers proposed multimodal models to
overcome this limitation. Mixture of Gaussians [14] is the
most famous multimodal model. This method can represent
moving background, like waving trees by using k Gaussians
to model each pixels. But it depends on the definition of the
k values. Heikkilä and Pietikäinen proposed a texture-based
background modeling method [4]. This method uses Lo-
cal Binary Pattern (LBP) [11] instead of pixel information.
The advantage of texture-based method is its robustness to
illumination variations. However, LBP tends to be sensi-
tive to noise, because a slight variation of the neighboring
pixels can cause entirely different texture patterns. Also,
this problem often occurs in flat regions. Xue et al. [16]
proposed hybrid center symmetric local pattern based back-
ground modeling methods to overcome this problem. It
works better than LBP, but this method detects foreground
coarsely because it models background as blocks instead of
pixels. Researchers proposed a novel method which com-
bines texture-based and pixel-based methods to get advan-
tages of both worlds [2, 17, 18]. However, these methods
need more computer resources, like memory, to maintain a
more complex background model.

Edge-based methods represent the background model by
using location of edge pixels. Edges are more robust to illu-
mination variations than pixel intensity. However, it still has
problems. In video streams, edge positions may not exactly
be the same at each consecutive frames. Also shape and
length of the edge may changed because of noise. To over-
come the problem of edge-based methods, edge-segment-
based methods were proposed [6]. They take the advantage
of the edge existence and shape information by concate-
nating adjacent edges. However, fundamental problems of
the edge-based methods can be inherited. Statistical edge-
segment-based methods solve the edge-variation problem
by accumulating the edge position in practice [9]. A post-
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processing step is required to extract the regions because
these methods detect foregrounds as the edges only. Kim et
al. [8] proposed Local Hybrid Pattern (LHP) as the princi-
pal feature to generate the scene background model which
adaptively divides edge and inner information. The charac-
teristic of the LHP code is that it represent both edge and
inner information, such as color or grayscale values. It uses
a flag bit to express either edge or pixel information. In de-
tail, they generate 8 bit LHP code including a flag bit. Each
pixel represents edge or inner information with less than
7 bits (because of the flag bit). They use the direction of
the maximum gradient response of neighboring pixels and
ternary pattern to generate edge code. This method is robust
against illumination variations, however, it may not repre-
sent various directions of the edge response because of its
usage of the primary direction.

Given that any local pattern can be used on the LHP
framework, there is a plethora of methods that arise from the
combinations of existing local pattern methods. For exam-
ple, LBP [11] has been used to represent local information
by using neighboring pixels. LBP is generated by compar-
ing intensity of the center pixel with each neighboring pixel,
and flag a bit string based on whether its intensity is big-
ger than the center pixel. It is robust to illumination varia-
tions; however, it may generate different patterns whenever
noise is included on the image. Local Directional Pattern
(LDP) [7], on the other hand, was proposed to overcome
the disadvantages of LBP by using edge responses obtained
by the result of Kirsch compass masks instead of pixel in-
formation. It generates 8 bit code by choosing k neighbor-
ing maximum edge responses. Each bit represents the state
of 8-neighboring pixels. The bits associated with each kth
neighboring maximum edge responses will be set 1, other-
wise they will be set 0. LDP is more robust against noise
than LBP, however, if the last kth maximum response is not
high enough, it may cause a problem due to noise during
code generation. Kim et al. [8] used a coding scheme that
uses the primary directional number and its orthogonal gra-
dient magnitude in their method. Because of the usage of
gradient magnitude, it is more robust against illumination
variations than LBP. However, this scheme considers only
one direction. Thus, it may not represent complex edges
with various high edge responses.

In this paper, we propose a novel approach to gener-
ate local information patterns. Our proposed method in-
cludes directional information of local neighboring pixels
through a set of restrictions imposed by the structure of
the neighborhood. Such restrictions make it more robust
to noise and other variations, as it will prevent it from en-
coding wrong information into the model. Thus, it is ro-
bust against noise and illumination variations (in compari-
son to intensity-based approaches) and can represent multi-
ple edge directions and corners. In detail, we use the gra-

Figure 1: Structural restrictions of each neighboring pixel
through a weight definition Wi. Each number in the upper
corner represents the index i of neighboring pixels. Gra-
dient orientation is quantized to 16 directions through a q
function. The circle located on the center shows the indexes
of quantized angle θ(x). The sectors filled with dark color
denote a strong weight (Ω), surrounding sectors filled with
light color denote a weaker weight (ω), and white denotes
zero weight. To consider sense of direction, we use blue
and green.

dient response of a Sobel filtered image, and use the mag-
nitude information to obtain the principal directions. We
check that these directions comply the structural restric-
tions, and if they do, we encode them as a structural edge
pattern code into the LHP framework. That is, we extend
the previously proposed LHP coding algorithm by replacing
the edge representation. Furthermore, we generate the back-
ground model using an Adaptive Dictionary Model. Results
obtained by using our method show that they are more ac-
curate than other methods in standard datasets.

2. Proposed Edge Pattern Coding Scheme
The main idea of the proposed algorithm is to create a

signature of the local neighborhood edge information. We
encode the principal directions that are within the structure
of a local neighborhood. The directions that deviate from
this restrictions are discarded as noise. The principal direc-
tions are encoded using directional numbers [13].

In detail, to compute the code for a given pixel, x, we
evaluate the gradient magnitude responses, Gm, of each yi
neighboring pixel for the current pixel x. Since we only
care about principal directions in the local neighborhood to
infer its structure, we consider a subset of possible struc-
tural edges on the local neighborhood: horizontal line, ver-
tical line, and eight corners (four in the cross and four in the
diagonals)—as shown in Fig. 1. To assert these directions
we impose a weight on the representative magnitudes of the
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local pixels that depends on their edge angle and their po-
sition in the neighborhood we are evaluating. Formally, we
compute the score, Si, of each neighboring pixel yi through

Si =

{
Gm(yi)Wi (θ(yi)) if Gm(yi) ≥ Tm,
0 otherwise,

(1)

where Gm is the gradient magnitude response computed
from the blurred Sobel operator, Wi is a weight function
that imposes a restriction on the possible directions accord-
ing to the ith position in the local neighborhood, θ is a
function that returns the angle of the pixel in the argument,
and Tm is a threshold that filters weak edge responses. The
weight function Wi returns three possible values, a strong
weight, Ω, a weak weight, ω, and zero weight according
to the structural restriction of the ith position in the neigh-
borhood. Formally, we define Wi according to its location
i ∈ {0, 1, . . . , 7} as

W{0,4}(α) =


Ω if q(α) ∈ {4, 12},
ω if q(α) ∈ {3, 5, 11, 13},
0 otherwise,

(2)

W{2,6}(α) =


Ω if q(α) ∈ {0, 8},
ω if q(α) ∈ {1, 7, 9, 15},
0 otherwise,

(3)

W{1,5}(α) =


Ω if q(α) ∈ {6, 14},
ω if q(α) ∈ {5, 7, 13, 15},
0 otherwise,

(4)

W{3,7}(α) =


Ω if q(α) ∈ {2, 10},
ω if q(α) ∈ {1, 3, 9, 11},
0 otherwise,

(5)

where W{i,j} denotes that the same function applies to the
locations in the set, i.e., i as well to j, α is the angle of the
pixel we are evaluating, and q is a function that quantizes
the angle α into 16 bins. Fig. 1 depicts the structural re-
strictions imposed by Wi. For each position i in the local
neighborhood, we established a principal direction (which
have a strong weight shown in darker color) and small devi-
ations from it (which have a weaker weight shown in lighter
color), as well as a sign of the direction (shown by the differ-
ent color in each location). To assign the weight to a given
angle, we quantized the angle domain into 16 bins, and each
bin has an associated weight that is returned by Wi. For ex-
ample, the 0th position will have an horizontal edge going
through it, thus we expect an edge response perpendicular
to it. Any other angle at position 0 will be treated as noise.

Once we computed the scores of every neighboring
pixel, we choose the two prominent pixels through

dk(x) = arg maxk
j

{Sj(x) | 0 ≤ j ≤ 7}, (6)

Figure 2: Simple explanation of the LHP code. It can rep-
resent two different information, whether it is edge or inner
code, by using flag bit.

where dk is the index of the kth maximum value in the set
of scores from every neighboring pixel of x, and arg maxk

is a maximum operator that returns the kth maximum ele-
ment. In this paper, we focus on two meaningful directions
to generate the proposed edge pattern code. Thus, we only
generate d1 and d2 as the first and secondary directions, re-
spectively. Finally, the proposed edge pattern code CEP is
generated as

CEP(x) =


16Cs (d1 (x)) + if (Sd1

(x) ≥ Ts
Cs (d2 (x)) ∧ Sd2(x) ≥ Ts),
0 otherwise,

(7)

where Cs is a function that transform the index and the sign
information into a three bit code, and Ts corresponds to
score threshold. If either Sd1(x) or Sd2(x) are less than
Ts, then we do not generate a code because they are not
meaningful enough directions. Note that we use d1 instead
of d1(x) in the subscripts (same for d2) for the sake of
simplicity—cf . (6). The code generation is defined as

Cs(i) = 8sgn(i) + i, (8)

where sgn is a function that returns the sign of the pixel
at position i. Note that we are abusing the notation of the
position of the pixel in the ith neighboring position for the
sake of simplicity in the definition of sgn . In rigor, sgn
should receive the yi position to compute it, but that will
make complexify the definition of (7).

3. Background Modeling
The Local Hybrid Pattern (LHP) is a local feature de-

scriptor that mixes edge and internal information. And it
is used with an Adaptive Dictionary Model that models
background by Kim et al. [8]. In this section, we explain
our modifications to LHP by mixing it with our proposed
method to model the background.

3.1. Local Hybrid Pattern

To train a video stream captured from stationary camera
to background model, we use LHP as the feature that rep-
resents two different sets of information, edge and texture
(inner), by using a flag bit. In Fig. 2, LHP code is repre-
sented as the edge or inner code whether the flag bit is 0 or
not.
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We should generate a binary edge image f as the flag
map to consider every pixels as either edge or inner code
before modeling background, because edge codes have to
be generated on the edge pixels only. We use the results of
the proposed coding scheme to make the decision on what
is and is not an edge through setting the flag f by

f(x) =

{
1 if CEP(x) = 0,

0 otherwise,
(9)

where x is the pixel position, and we consider pixel x as the
edge if CEP(x) = 0. We generate the code

LHP(x) =

{
2n−1f(x) + CEP(x) if f(x) = 0,

2n−1f(x) + Cinner(x) otherwise,
(10)

where Cinner(x) is code method which computes inner code
by maintaining the high bits of the intensity value through

Cinner(x) = I(x)� b, (11)

where � represents the shift-left b bits operator to the left
argument, and I is the intensity image.

3.2. Adaptive Dictionary Model

We use Adaptive Dictionary Model (ADM) based back-
ground model method. Let B = {Dx} be the model as a
set of dictionaries and Dx is a dictionary defined as

Dx = {(c0, w0), (c1, w1), . . . , (cN−1, wN−1)}, (12)

where x is a pixel position, ci is the ith code and wi is as-
sociated weight. Every dictionary has a limit, N , on the
number of codes.

To consider background changes, such as waving trees,
we need to update background model. LetBt = {Dt

x : ∀x}
be the current background model at time t and Bt+1 be the
next model at time t + 1, we compute Bt+1 by updating
each associated weight of all the codes in the dictionaries
belonging to Bt through wt+1

i = u(c, di, wi), where the
latter is defined as

u(c, di, wi) =

{
(1− α)wi + α if m(c, di) = 1,

(1− α)wi otherwise,
(13)

where c is the code at pixel position x at time t computed
by (10), (di, wi) is the ith tuple which belongs to Dt

x, α is
the learning rate and m(c, di) is a function which checks
whether c is matched to di through

m(c, d) =

{
medge(c, d) if c is edge,
minner(c, d) otherwise,

(14)

where medge and minner are matching functions for each
case, such as edge and inner. These functions are defined
as

medge(c, d) =

{
1 if c = d,

0 otherwise,
(15)

minner(c, d) =

{
1 if |c− d| ≤ Ti,
0 otherwise,

(16)

where Ti is a threshold that checks the similarity between
c and d. Now we can manage Dx, that is, a new code c at
time t that is not the matched code d belonging to Dt needs
to be added to Dt to generate background model Bt+1. We
achieve it through

Dt+1
x =

{{
Dt

x\
{

(dj , wj)
}}
∪
{

(c, α)
}

if |Dx| ≥ N,
Dt

x ∪
{

(c, α)
}

otherwise,
(17)

where \ is the difference set operator, (dj , wj) is the tuple
comprised of code dj and its weight wj , and |Dx| is the
number of elements in Dx.

4. Foreground Detection

Similarly to previous section, we use foreground detec-
tion method proposed by Kim et al. [8]. To mix the ad-
vantages of both edge and inner, first we generate candidate
foregrounds of edge and inner as following:

Fcand(x) =

{
1 if p(x) < Tc,

0 otherwise,
(18)

where Tc is a threshold of the background probability, and
p(x) is the probability map defined by

p(x) = P
(
LHPt(x), Dt

x

)
, (19)

where LHPt(x) is the code and Dt
x is the dictionary of the

pixel x at time t. The function P returns the probability of
the dictionary as follows

P(c,D) =

{
norm(wi) if ∃ d ∈ D : m(c, d) = 1,

0 otherwise,
(20)

where c is a code, D is a dictionary and norm(wi) is a nor-
malization function norm(wi) = wi/

∑
j wj .

After doing that, we need to fill the holes in candidate
foregrounds by performing a closing operation. Finally, we
can classify foreground by finding intersected regions be-
tween edge and inner candidate foregrounds.
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5. Experimental Results
In this section, we examine the performance of our pro-

posed method against several datasets from the ChangeDe-
tection database [3] which consists of six different cate-
gories. In detail, we chose five datasets from three differ-
ent categories: Highway (HIGH), Pedestrians (PED) and
PETS 2006 (P2006) from Baseline, Parking (PARK) from
Intermittent Object Motion and Bungalows (BUN) from
Shadow. Both HIGH and PED sequences include illumi-
nation variations, P2006 include object which is left on the
floor and PARK have new background that is made by the
parked car.

We compared our proposed method against three differ-
ent edge code descriptors using ADM based background
modeling method using LHP [8]. As well, we compared
our proposed method against four state of the art meth-
ods, Pixel-Based Adaptive Segmenter (PBAS) [5], Spa-
tially Coherent Self-Organizing Background Subtraction
(SC-SOBS) [10], Visual Background Extractor (ViBe) [1]
and Vibe+ [15].

We use F-measure (F ) to measure how well each
methods matches the ground truth defined as F =
2(Pr)(Re)/(Pr +Re), where Pr is precision, and Re is
recall, and are defined Pr = TP/(TP + FP ), Re =
TP/(TP + FN), where TP are true positives, FP are
false positives and FN are false negatives. Before mea-
surement, we assume that all the detected foregrounds in
the region of interest (ROI) are TP .

Proposed method has four parameters: Tm, Ts and the
weight function weights Ω and ω. For the following exper-
iments we set Ω = 1, and for the thresholds and weight ω
we did a parameter search using the F1 measure by chang-
ing Ts, Tm and ω simultaneously. In here, we report the
average score of the best case Tm = 45, Ts = 40 and
ω = 0.7 using the other in Figs. 3(a), 3(b) and 3(c), re-
spectively. All the methods compared to proposed method
in this paper can be included in 7 bits. But our proposed
method requires 8 bit. We can include the proposed edge
pattern code in LHP by extending the code size of LHP. But
to evaluate it fairly, we did not extend it, but used a lookup
table instead which uniformly converts 8 bit proposed code
to 7 bit.

First we evaluate the contribution of the proposed
method as an edge feature descriptor into the background
model by using different codes in the proposed framework
instead of proposed method. Namely, we compared against
original LHP, LBP, and LDP. The parameters for each
method are as follows. We use similar setup as Kim et
al. [8] for LHP, i.e., Tedge = 100. We set LBP2,6 which gen-
erates code using 6 neighboring pixels on a circle of radius
2. LDP3 is generated by considering the top 3 neighboring
edge responses. Inner code quantization parameter b = 1,
ADM learning rate α = 0.006 and Tcand = 0.18.

40 45 50 55 60 65 70
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ω
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(c)
Figure 3: The average F -measure of the proposed method
over all the datasets when changing (a) the magnitude
threshold (Tm), (b) the score threshold (Ts) and (c) the
weight (ω).

We show quantitative evaluations of all the descriptors
and our proposed method on Table 1. In all the datasets,
except in HIGH, our proposed method is better than pre-
vious methods. In HIGH case, there are many FP in the
moving background region, such as waving trees, due to the
discriminative rate of the codes in proposed method. Thus,
the proposed algorithm represents the directions of the dy-
namic edges differently. However, proposed method shows
better results than other methods (see Fig. 4).

Our proposed method represents various edge informa-
tion by using neighboring directions and it is more robust
against noise and illumination variations than other coding
methods. Fig. 5 shows illumination variations in HIGH and
overlapping edges in PARK. In HIGH dataset, the vertical
line in red box is a background edge. LBP and LDP de-
tect many false edge candidate because they generate dif-
ferent code (due to sensitivity to illumination variations).
LHP and our proposed method are more robust to illumina-
tion variations because both use principal neighboring edge
information. In PARK dataset, the car, as ground truth,
is overlapping with the horizontal line in the background.
In this case, LHP cannot detect enough edge candidate be-
cause it considers one principal neighboring edge informa-
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Figure 4: Examples of detection each of the different
dataset sequences. (a) HIGH, (b) PED, (c) P2006, (d)
PARK, (e) BUN from ChangeDetection database. GT is
ground truth

Table 1: Quantitative results of edge descriptors as F-
measure (%).

Descriptor LHP LBP2,6 LDP3 Proposed

HIGH 91.99 91.52 91.45 90.41
PED 90.99 90.66 90.38 91.08

P2006 71.07 71.38 71.59 72.43
PARK 62.21 65.61 68.12 71.59
BUN 95.48 95.65 95.59 95.65

Avg. 82.35 82.96 83.43 84.23

tion. It means that LHP cannot reliably distinguish over-
lapping edges. Furthermore, candidate foreground edge of
proposed method is more stable (continuous) than others,
because proposed method considers two principal neighbor-
ing pixels within its encoded information. Thus, proposed
method shows better results consistently in comparison to
others. The detection of good edge candidates is important
when we use LHP method, thus the introduction of pro-
posed method provides an improvement of the overall algo-
rithm.

Quantitative and qualitative evaluations of state of the
art methods against our proposed method are shown in Ta-
ble 2 and Fig. 4, respectively. In this case, we generate
results with the ADM-based background modeling method
using LHP which include proposed method as edge code
with post processing median filter. We can get better re-
sult than other methods in PARK sequences because when
parked car leaves, our proposed method can update more
faster than others.

LHP LBP2,6 LDP3 Proposed
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T
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Figure 5: Examples of candidate foreground edge and de-
tection results. First column is input frame and ground truth
of each dataset (HIGH and PARK), respectively. Second
group of columns show the result of different methods in
each dataset.

Table 2: Quantitative results of background modeling meth-
ods as F-measure (%)

Methods PBAS SC-SOBS ViBe ViBe+ Proposed

HIGH 92.59 89.64 85.46 89.09 91.77
PED 91.30 80.89 80.77 81.95 91.74

P2006 85.99 79.70 70.65 72.98 72.73
PARK 16.48 40.05 38.77 26.32 74.02
BUN 94.82 93.82 91.40 94.23 96.02

Avg. 76.24 76.82 73.41 72.91 85.26

6. Conclusions

In this paper, a novel edge descriptor is proposed that
encodes directional information reliably by imposing struc-
tural constraints on the possible edge directions that ap-
pear in the local neighborhood that is analyzed. Proposed
method takes the advantage of using a quantize angle space
to provide with weights to score the different pixels, and, fi-
nally, produces a stable code. We use the proposed method
in the LHP background modeling framework and obtained
better results than existing methods in several datasets. We
compared our proposed method to other local descriptors
under the same LHP framework, and we obtained better re-
sults. Moreover, we show that the LHP plus our proposed
method combination yields a better performance in standard
datasets in comparison to other state-of-the-art background
modeling methods.
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