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Abstract— Most background modeling methods fail in the
presence of dynamic backgrounds, because the model cannot
handle sudden changes. A solution to this problem is the use
of intensity-robust features: such as edges. In this paper, we
propose a robust statistical edge-segment-based method for
background modeling for non-ideal sequences. The proposed
method learns the structure of the scene using the edge-
segments’ behavior. Moreover, the use of segments gives us
local information of the scene, which help us predict the
objects and background precisely. Additionally, the proposed
method uses adaptive thresholding to detect the moving
objects. Whereby, this approach increases the accuracy over
previous methods, which use fixed thresholds. Experiments
show that the proposed method produces reliable results in
dynamic backgrounds, where other approaches fail to detect
the moving objects.

Keywords: Background modeling, motion detection, object de-
tection, edge-segments

1. Introduction
The background model used in the moving object detec-

tion, using a fixed camera, plays a critical role in determining
the performance of the moving object detection, as the
background is subtracted from each frame. For a robust
moving object detection, the background model should be
able to absorb the shape and illumination variation of the
background, and overcome the presence of moving objects
and noise. Several features have been used to model the
background and to detect the foreground [1]–[4]. However,
we classify the background modeling methods, according
to the feature used, into two groups: pixel-based and edge-
based methods.

The pixel-based methods model the background using
the intensity of each pixel, and several techniques [5]–
[10] exist to create a model of each pixel. They produce,
however, ghosts in the background model (i.e., moving
objects appear in the background model) compromising the
method detection capabilities, which cause false detected
foreground. Although statistical techniques have been used
to overcome the ghost effect, the methods are susceptible
to sudden illumination variations. Traditional pixel-based
methods present two problems: multi-modal distributions
in dynamic environments, and sensitivity to illumination
changes and noise.

On the other hand, edge-based methods rely on edges,
a feature that is less sensitive to intensity changes, solving
one limitation of the pixel-based methods. Edges, however,
have position and shape changes. Nevertheless, the use
of edges allows these methods to use more robust and
expressive models, because they work with fewer pixels.
Moreover, most methods [11]–[17] use the edges pixel-
wise, which misses the shape and neighborhood information
of the edge, and such approach creates other problems
(e.g., scatter edges and false positives). A solution for these
problems is treating each edge as segment by considering
all pixels together rather than individually. For instance, Jain
et al. [18] proposed a method that models the background
based on a sub-pixel edge map, representing the position and
orientation of the edge using a mixture of Gaussians model.
The objects are extracted when no match is found with
the background model. The method, however, is prone to
incorporate ghosts in the background model due to moving
objects, producing false detections. Also, Hossain et al. [19]
made use of an edge-segment-based approach and flexible
matching to detect moving objects. A set of list of edges
holds the changes in the scene, and the object is detected
from the elimination of edges on those lists. The edges,
however, are matched using a fixed threshold, treating all
the search regions of the edges in the same way, when
they present different variations due to their dynamic nature.
Then, a watershed-based iterative algorithm is employed to
segment the moving object region from the extracted moving
edges. Nevertheless, they require ideal frames to create the
background model.

Most edge-based background modeling methods assume
that a sequence free of moving objects is available to create
the model. This assumption is not true in real scenarios,
in which it is impossible to have a clear background—e.g.,
a parking lot, a crowded street, or freeways. Therefore, a
method that can build a background model in the presence of
moving objects is needed. Moreover, they do not overcome
the ghost effect due to moving objects. Additionally, these
methods are sensitive to edges’ shape and position changes.
Despite that edges have different changes and that should
be treated individually, edge-based methods use a fixed
matching scheme to verify all the edges.

Consequently, we present a novel statistical background
modeling method based on edge-segments, in which we
model the structure of the scene by learning the edges’ be-
havior. Thus, this behavior is encoded as statistical distribu-
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Fig. 1: Edges have changes in shape and position. (a) Shows
a sample scene with waving trees, and (b) its edges. (c)
Shows the accumulation of 100 frames reveals the variation
of the edges. The building’s edges have small variations,
while the trees’ edges present high variations.

tions of edge-segments among frames. Thereby, the proposed
method can work without an ideal sequence, overcoming
edges shape and position changes, and background intensity
changes. Additionally, we introduce an adaptive threshold
mechanism that exploits the behavior of different edges,
which reduces the false detections.

2. Background Modeling using Edges
Recent research is focusing on the use of edges as con-

sistent features, due to their robustness against illumination
and noise. Nevertheless, edges have some problems: shape
and position changes. Figure 1 illustrates these problems,
as it shows a sample scene with waving trees and its
corresponding edges, and illustrates how much an edge could
move from one frame to another (Fig. 1c). Moreover, each
edge has different variations (the edges of the buildings
exhibit little variation in comparison to the edges of the
trees) and even edges from similar objects reveal diverse
behavior (the tree in the middle manifest more motion than
the trees in the corner of the picture). Therefore, a simple
pixel by pixel matching approach would fail most of the
time. Another problem arises when the moving object edges
are close to the background edges, case in which the moving
edges are confused with background. Additionally, recent
methods verify all the edges based on fixed thresholds, which
encumbers the task of distinguishing them from each other.

On the other hand, our method copes with these problems
thanks to the edge-segment statistical approach. To represent
the objects and the background, we use edge-segments that
are less sensitive to illumination changes. Consequently, to
avoid edge shape and position changes, we learn the behavior
of these edge-segments through a set of kernel-based statis-
tical distributions. Note that the use of segments introduces
more information, which makes the score generation more
reliable than a edge pixel by pixel verification. And so, we
apply an adaptive threshold to each segment distribution,
which sets a different threshold automatically according
to each edge’s observed variations. Moreover, the edge’s
variations allow us to determine the position where we
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Fig. 2: A flow diagram of the proposed method.

will split foreground edges that merge with the background.
Thus, we increase the detection accuracy of our method.

3. Proposed Method
Our statistical model attempts to predict the edge’s be-

havior, i.e., its shape and position changes, and encode it
into a set of parameters. Therefore, when a new edge comes
to the scene, we test it against the previous observed edge’s
behavior, and determine whether it fits the previous edges or
it is a new one. Moreover, we use an adaptive comparison
framework for the edges (i.e., the threshold for the matching
score and the search window) that increases the accuracy
of the detection. Additionally, the statistical model allows
us to suppress the contribution of the moving objects to
the background model, leaving only the background edges
contribution in the model. In summary, the background
modeling method is divided in four parts (as shown in
Fig. 2): (1) First we create the frame statistical model. It
is a kernel-density distribution from the edge maps. (2)
Then, the frame statistical distributions are accumulated
using temporal information. (3) And the accumulation is
adptively thresholded, allowing us to use non-ideal frames
to learn the background. (4) Finally, the moving edges are
extracted as outliers from the statistical model. Furthermore,
we present an abstraction of the method in Fig. 3.

3.1 Statistical Modeling
To estimate the edges’ behavior, first, we extract each

image’s edges using Canny edge detector [20], and represent
the extracted edges set from frame t with a binary edge map,
Et
b. Then, we create the statistical map, SM, that is the set

of all the distributions, from a set of frames through

SM =

tf∑
t=t0

∑
e∈Et

b

K(e), (1)

where the range of frames is from the initial frame t0 to the
final frame tf , Et

b is the binary edge map at frame t, e is an
edge from the edge map Et

b, and K(·) is a kernel function
estimator.

We create a weighted distribution in each edge by placing
a kernel function estimator, K(·), over each edge pixel.
The kernel is a function chosen to model the statistical
behavior of the edges, and it helps to compensate the small
number of data—as the edges are sparse and change too
much. Furthermore, the kernel width will give the minimum



Fig. 3: An abstraction of the proposed method.

variation when the edges present no variation at all. Hence,
in our experiments, we chose a Gaussian kernel to model
the edge’s behavior, as it should be in a long sequence, and
it is given by

K(e) =
1√
2πh

∑
p∈N (e)

exp

{
− (p− e)2

2h2

}
(2)

where e is a pixel’s position from the edge map, p is the
pixel’s position that belongs to neighborhood N (e) of the
edge e, and h is the width of the kernel (Note that the width
of the neighborhood is the same as the width of the kernel).

3.2 Adaptive Threshold
Note that the distributions are different from two points of

view: accumulation and motion. The accumulation of edges,
among frames, reveals their variation and frequency (rate
of the edge’s occurrence in consecutive frames). Moreover,
the frequency indicates which distributions represent back-
ground and which ones foreground (as shown in Fig. 3).
Thereby, the background and the foreground have a dis-
tinctive frequency. For instance, the moving objects, that
appear and disappear from the scene, create small peaks in
the distribution; while the background edges have a high
distribution. Consequently, we can remove the spurious dis-
tributions based on the edge’s frequency. On the other hand,
the different motion in the edges creates wider or narrower
distributions, e.g., edges with a lot of movement create
spread distributions, while edges with little movement create
sharp distributions. The creation of ad hoc distributions for
each edge allows us to define accurate search regions for
the edge matching process, and define adaptive thresholds
for each edge according to its characteristics. We threshold
the distributions from these two points of view: by using
the accumulation to remove foreground, and by using the
motion (through the standard deviation of each distribution)
to improve the accuracy of the detection.

3.2.1 Accumulation Threshold
To remove the distributions created by the moving objects,

we assume that the moving objects will have an average
speed v in pixels per frames. Moreover, we use the inverse

of the speed, 1/v, that gives us the number of frames that
an object stays in the same place. Hence, we proposed a
threshold, to remove such distributions, defined by

T =
max (K(·))

v
, (3)

where max (K(·)) is the maximum value from the kernel
function, and v is the moving objects minimum average
speed. In our experiments, we assumed that the objects will
present a minimum average speed of v = 2/N , where N is
the number of frames used for learning (we used N = 200),
that is, an object will not be stopped more than half of the
total frames used for learning the model.

3.2.2 Motion Threshold

To threshold the distribution according to their motion
we need to compute the cutting point that represents certain
percentage of the distribution (given by kσ). First, we thin
each distribution using Multi-Directional Non-Maximum
Suppression [21] (which is the application of the non-
maxima suppression algorithm at several directions and the
combination of the results) to extract the center (maximum
peak of) each distribution. Consequently, we can compute
several moments of the distribution, and approximate the
cutting point of the distribution through slices of the distri-
bution that are orthogonal to the center of the distribution.
First, we define the ratio of the probability of two given
points by

Gi

Gj
= exp

(
x2j − x2i
2σ2

)
, (4)

where xi and xj are points in the distribution with probabil-
ity Gi and Gj , respectively, and σ is the standard deviation
of the distribution. This relation allows us to use the mean of
the distribution (G0 at position x0 = 0), to define any point
position (xi) as the a function of the ratio of its probabilities,
by

xi =

√
2σ2 ln(

G0

Gi
). (5)
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Fig. 4: Similarity measure on I2R database.

Thus, we can define the quantization step q between to points
of the distribution, by

q = xi − xj (6)

=
√
2σ2

[√
ln

(
G0

Gi

)
−

√
ln

(
G0

Gj

)]
. (7)

Moreover, we define the cutting point for a kσ percentage
of the distribution (in our experiments we use about 95% of
the distribution by using k = 2) by

pcut =
kσ

q
(8)

=
k

√
2

[√
ln
(

G0

Gi

)
−
√
ln
(

G0

Gj

)] . (9)

Thereby, this point is the pixel position from the mean of
the distribution that defines where to prune the distribution.
Furthermore, we use several points from each distribution
(as samples from the orthogonal slice of each mean point) to
refine the approximation of this cutting point (by averaging
the resultant cutting points). Consequently, we create a map
with regions that represents the background.

3.3 Foreground Detection
We use the resultant distributions of the adaptive threshold

operation as background model to detect the moving objects
in the scene. In order to detect the moving objects, first, we
obtain the edges in the incoming frames by using a Canny
edge detector. Then, we compare the moving edges with the
background model. Consequently, those edges that do not
lie within a background distribution are consider moving
objects.
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Fig. 5: Segmentation of I2R data set [22] sequences. (Rows)
Different sequences. (Left Column) A sample frame of each
sequence. (Middle Column) Ground truth of each sequence.
(Right Column) Proposed method segmentation result.

4. Experiments and Results
We test our method on different sequences [22] that

present dynamic backgrounds and represent situations for
video surveillance systems. For a detailed description of the
sequences refer to [10]. The ground truth was segmented by
hand. The sequences are the meeting room sequence (MR),
the lobby sequence (LB), and the shopping center sequence
(SC).

4.1 Evaluation
The quantitative metrics we use are Precision, Recall, and

Similarity, defined by

Recall =
tp

tp+ fn
(10)

Precision =
tp

tp+ fp
(11)

Similarity =
tp

tp+ fn+ fp
(12)

where tp is the total of true positives, fn is the total
of false negatives, and fp is the total of false positives.
Each indicates the number of items detected or not in the
ground truth or the foreground detection accordingly to
each method; in the region based methods it indicates the
percentage of regions matched, the same is true for pixel
and edge based methods. Recall gives the percentage of
true positives detected. Precision gives the percentage of
detected items that are true positives. And the Similarity is
the weighted harmonic mean of Precision and Recall. The
use of percentages let us to compare the methods’ outputs,
using different detection outputs, such as pixels and edges.



Table 1: Evaluation of the proposed method on I2R database.

Sequence Precision Recall
MR 0.899 0.929
LB 0.923 0.992
SC 0.759 0.956
Average 0.860 0.959

4.2 Results
We compared the proposed method in the I2R data set [22]

against other five methods referred as BBS, MoG, BNN
and SBOS, reported in [23], and FOS. Li et al. [10] use a
Bayesian framework for background subtraction (BBS) that
incorporates spectral, spatial and temporal features to clas-
sify background and foreground. The Mixture of Gaussians
(MoG) [24] uses multiple weighted Gaussian distributions
as a background model and an online update method for the
parameters. The background neural network (BNN) [23] is
a mixture of a probabilistic neural network and a winner-
take-all neural network with temporal adaptation weights
based on a Bayesian formulation. The SOBS [25] is a self-
organizing approach through neural networks that present
similarities with codebook methods. Kim and Hwang [14]
present a fast object segmentation (FOS) algorithm that uses
edges to extract the moving objects in a video sequence.
Their method relies on a simple background model with
frame difference approach to extract the moving objects.
Figure 4 shows the similarity metric of the methods on
the different sequences. The proposed method has good
performance on the indoor sequences (MR and LB), with
an average improvement over the second best of 25%.
Moreover, it performs well in the large indoor sequence SC,
which has challenging illumination reflections. Moreover, in
average the proposed method outperforms the other methods.

The proposed method is capable of segmenting the mov-
ing objects in the presence of dynamic background in most
of the test sequences. Representative frames and correspond-
ing foreground segmentation results are shown in Fig. 5. This
figure shows that the proposed method can cope with com-
plex backgrounds. The shadow and illumination robustness
is shown in the sequence SC. The proposed method proved
to be robust against dynamic illumination environments. The
precision and recall values for these sequences are shown
in Table 1. This table shows the high recall values of
our method. However, the precision of the method can be
improved by including more information into the model.

5. Conclusion
We presented a statistical edge-segment-based method to

model background and detect moving objects in dynamic
environments. The proposed method builds statistical dis-
tributions for each edge-segment, using each edge-segment
unique information to compare other edges resulting in
a robust adaptive verification process. Moreover, thanks

to these features we overcome the most common edge
problems, such as shape and position changes. Furthermore,
these mechanisms can be incorporated in other edge-based
methods to extend their functionality and make them robust
in dynamic environments. The proposed statistical map can
be used to split foreground edges that merge with the
background, increasing the detection accuracy. Additionally,
the proposed method explores the edge domain, which has
not been researched as much as the pixel domain, for object
detection. We found promising results that can be used
in several applications, including surveillance in dynamic
backgrounds and content-based video encoding.
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