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Abstract

In this paper, we propose a hybrid background model

that relies on edge and non-edge features of the image to

produce the model. We encode these features into a coding

scheme, that we called Local Hybrid Pattern (LHP), that se-

lectively models edges and non-edges features of each pixel.

Furthermore, we model each pixel with an adaptive code

dictionary to represent the background dynamism, and up-

date it by adding stable codes and discarding unstable ones.

We weight each code in the dictionary to enhance its de-

scription of the pixel it models. The foreground is detected

as the incoming codes that deviate from the dictionary. We

can detect (as foreground or background) and classify (as

edge or inner region) each pixel simultaneously. We tested

our proposed method in existing databases with promising

results.

1. Introduction

In these days, the number of video-based surveillance

systems is increasing due to its use in several applications,

such as vision-based traffic system [4], video segmenta-

tion [13, 15], or human behavior analysis [1]. Most meth-

ods for video-based surveillance rely on moving object de-

tection. One popular approach to implement the latter is

background subtraction. Although background modeling

has been widely studied, there remain many unsolved chal-

lenges. Several methods [4,9,13,14,17,18,21,27,28] have

tried to solve problems from global and local illumination

changes, dynamic background (such as trees waving and

rippling water), background changes (new background ap-

pearance, birth and death), and shadow effects as shown in

Fig. 1. We classify traditional background modeling meth-

ods as pixel- and edge-based methods. Nonetheless, recent

surveys [3, 26] present a complete view of the field.

Pixel-based methods use the information of pixels, such

as intensity or color, to represent consecutive frames [17,

18, 27, 28]. These methods are robust to changes in loca-
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Figure 1. Examples for the background variations, such as global

and local illumination, dynamic background, shadows effect from

moving objects, and background changing (birth and death).

tion and orientation of background objects. However, they

are sensitive to pixel-value changes, such as global and lo-

cal illumination changes. Single modal representation was

used [18, 28] (e.g., median, average, or single Gaussian),

but background variation from illumination is not well rep-

resented by a single model. To overcome this limitation,

mixture of Gaussians (MoG) are used to generate a sta-

ble background [27]. In this type of methods, each pixel

has k Gaussian models with weights representing their pri-

ority. Nevertheless, these methods depend on the correct

number of background variation k, as well as an accurate

update ratio for foreground with slow motion. Heikkilä and

Pietikäinen [7] proposed a mixture of histograms that are

based on local binary patterns (LBP) to model the back-

ground. They borrowed ideas from the MoG methods, and

changed the way of modeling the distributions. Other meth-

ods [25] that model the background based on LBP has been

proposed too. Also, codebook-based methods are used for

background modeling [6, 17]. These approaches use code-

words with variable size to represent pixel variation instead

of using Gaussians for each pixel distribution. The auto-

matic generation of codewords, however, in changing envi-

ronments may produce a large number of codewords. On

the other hand, there are non-parametric methods, such as

the method proposed by Hoffman et al. [8] or previously

proposed ViBe [2], that do not assume a shape on the distri-

butions but rather use a history of samples to make decisions

about the foreground.
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Figure 2. Problems of pixel and edge based methods. Red-dashed

boxes show the region of illumination change, and green-dashed

boxes show foreground region. Pixel-based methods are sensi-

tive to illumination changes and lose some boundary of the fore-

grounds, as shown in the second column. Edge-segment based (or

edge based) methods are robust against illumination variations, as

the red-dashed box on third column shows. However, these meth-

ods cannot define the inner information of foregrounds (see green-

dashed box on third column).

On the other hand, edge-based methods use only lo-

cation of edges (not all pixel locations) to represent the

background model. Edges are more stable to illumination

changes than pixel values. Sequential frames, however,

may not have exactly the same edge position, and have

shape and length changes due to noisy frames. Existing

edge-pixel-based methods use binary information [4, 13] or

models [11] as existence of edge on each pixel. This strat-

egy may generate many false alarms for foreground detec-

tion due to edge distortion from adjacent frames. To solve

the edge-distortion problem, edge-segment-based methods

emerged to take advantage of the edge existence and its

shape information [9]. An edge-segment is the concate-

nation of adjacent edges, and they inherit the problems of

edges: shape and position changes. Thus, naive compari-

son of edge-segments produce similar results as edge-pixel-

based approaches. Statistical edge-segment-based methods

extract movement of edge-segments including edge distor-

tion [14, 16, 21]. These methods solve the edge-variation

problem by accumulating edge existence from a training

sequence. Each accumulated region represents an edge-

segment distribution and each region refines their statisti-

cal properties after each frame to generate a stable back-

ground model. Since edge-based and edge-segment-based

methods detect foreground as edges, these methods depend

on a post-processing to extract the regions defined by the

detected edges. Moreover, these methods have problems

updating their background model to adjust for background

birth and death.

In this paper, we propose a local information encoding

algorithm and a hybrid background modeling method that

uses a mixture of edge and pixel representations. Thus, it

mixes the advantages of pixel-based and edge-based meth-

ods for background modeling (and simultaneously tries to

solve their common problems, see Fig. 2).

In this method we encode the information of each pixel

and its neighborhood (both the structural and texture infor-

mation), and compute the frequency of the edge and inner

non-edge characteristics by generating a Local Hybrid Pat-

tern (LHP) code that represents either edge or inner infor-

mation. We put a flag in the LHP code to separate the two

types of information.

To generate the background model, Adaptive Dictio-

nary Model (ADM), we mix the ideas of previous meth-

ods [7,8,27], as we use a dynamic history of compressed in-

formation (the LHP codes) that is weighted and maintained

through an online updating mechanism. Previous methods

that use hybrid information and similar encoding patterns

exist [12, 19, 30]; however, they encode information of the

generated codebook, which may change later thus creating

inconsistencies with the coded information. Moreover, both

features are used simultaneously regardless of the type of

region. Thus, the fact that gradient is not significant on

flat regions is overlooked. On the contrary, our proposed

method uses the most relevant feature in each region (i.e.,

flat or edge regions).

In detail, first we create an adaptive dictionary of LHP

codes for each pixel. Then, we update it similarly to pre-

vious methods [27], we weight each code and dynamically

add or remove them in the modeling process. The flag in

the LHP codes induces two different distributions, between

edge and inner, in the model’s frequency. Thus, we can

jointly model the structure and texture information of the

pixels in the background. For foreground detection, we gen-

erate a probability map for each pixel, based on the LHP

code dictionary probabilities. Consequently, detected can-

didate foregrounds are divided into edge and inner regions,

and the final decision of foregrounds uses the two candidate

regions. By using these edge and inner characteristics, we

produce results that are less sensitive to global and local il-

lumination changes and noise. Moreover, our method can

detect both foreground object and its boundary stably and

simultaneously.

Our main contributions are as follows:

• A hybrid background modeling technique that classi-

fies each detected pixel as one of two groups: inner or

edge. Finding edges and inner regions simultaneously

provides an advantage of the proposed method over ex-

isting ones. This information can be fed to other algo-

rithms for further processing, such as providing inner

edges of pedestrians for determining their pose, or sep-

arating merged objects through the edge information in

the detection, among others.

• A Local Hybrid Pattern (LHP) coding scheme to

jointly represent texture and edges.

• A dictionary technique, Adaptive Dictionary Model

(ADM), to create structures to model the underlying

distributions of the characteristics that appear in each

pixel through the dynamic maintenance of the history

of observed codes.
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• Foreground classification using heterogeneous infor-

mation (characteristics of edge and inner regions).

2. Local Hybrid Pattern

For training and testing sequences, we convert each input

image to a coded image in which every pixel is classified as

edge or inner region. Each region type maintains different

properties. The edge region has boundary properties, such

as a primary edge direction and an edge magnitude. These

properties help to solve the edge overlapping problem—i.e.,

when an edge of another object (foreground) may be con-

fused with background edges. On the other hand, the inner

information helps to enrich the discrimination of the model,

as texture and flat regions do not have a prominent direc-

tion and the inclusion of edge information in that areas will

introduce noise into the model.

To decide which type of code we will generate for a par-

ticular pixel, we inspect the maximum edge response of the

local neighborhood of a given pixel. If the pixel’s maximum

edge response is high enough, we will consider it part of an

edge region; otherwise it will be an inner region, and we

will code it accordingly. We calculate the gradient response

by using a compass mask—note that any set of masks that

generates M discrete directions can be used, in our case we

used four (M = 4) directional Sobel masks.

Let gi(x) denote the gradient response of the ith mask at

the pixel position x in a given image. Then, we can find the

maximum response of a given pixel position x by

g∗(x) = max{gi(x) | ∀ i}. (1)

We create a binary image f that flags each pixel, at position

x, as edge (0) or inner (1) through

f(x) =

{

0 if g∗(x) > Tedge,

1 otherwise,
(2)

where x is the pixel location, and Tedge is a threshold to

decide whether the response is significant enough.

In the following we will incorporate this flag into the

code (in the most significant bit, for representation sake) to

decide whether the information corresponds to an edge or an

inner region. Then the rest of the bits in the code can be used

to represent the edge and inner information accordingly. We

generate the code as

C(x) =

{

2n−1f(x) + Cedge(x) if f(x) = 1,

2n−1f(x) + Cinner(x) otherwise,
(3)

where n is the length (number of bits) of the code C to be

generated, and Cedge and Cinner are code functions for edge

and inner pixels, respectively, that generate codes of size

n− 1 bits as shown in Fig. 3.

Figure 3. Code generation for LHP. The code is separated for ei-

ther edge or inner region. In this paper, the edge code uses the prin-

cipal direction and quantized gradient magnitude (two bits each),

while inner code uses the quantized intensity information (the size

depends on the quantization).

In the case of edge-based code generation, we can

use any type of edge-based coding, such as LDP [10,

29], LDN [22–24], LBP [7], or even dynamic-features

codes [20], among others. In this paper, we propose to use

a code that uses the principal directional number, P , and its

orthogonal gradient magnitude, g⊥P . For the principal di-

rection we use 2 bits, and for the gradient we use 2 bits to

represent such information. The coding function is

Cedge(x) = 4P (x) + g⊥P (x)(x), (4)

where the principal directional number for the pixel at posi-

tion x is computed by

P (x) = argmax
i

{gi(x) | 0 ≤ i ≤ M − 1}, (5)

which ranges from 0 to M − 1, where M is the number

of directional masks used, and the orthogonal magnitude is

encoded in a ternary pattern by

g⊥P (x)(x) =











0 if gj < −Ttern,

1 if − Ttern ≤ gj ≤ Ttern,

2 if gj > Ttern,

(6)

where j is the orthogonal direction of the principal direction

at pixel x, and Ttern is a threshold to divide the magnitude

into a ternary pattern.

To compute the code of the inner features, we simply

use the first significant bits of the gray intensity of the given

pixel x. In our case, we set the general code C to have

n = 8 bits; thus we have seven remaining bits to use for

the Cinner code. Therefore, we compute the code by doing a

right shift operation on the intensity level, I , of the pixel x

by

Cinner(x) = I(x) ≫ b, (7)

where ≫ shifts b bits of the left-operand (in general, b ≥ 1
due to the code length n).

3. Adaptive Dictionary Model

The proposed background model is comprised by an

adaptive code dictionary at each pixel. We define a dic-

tionary as a set of codes with an associated weight value,

Adaptive Dictionary Model (ADM). To construct the codes
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Figure 4. Overall flow of the proposed background modeling algo-

rithm.

we use the LHP introduced in Section 2—although any cod-

ing method can be used. The dictionaries are updated on-

line during the sequence processing. This approach allows

us to recover stable codes from the incoming sequence, and

discard unstable or noisy codes. The dictionaries act as an

approximation of the underlying distributions of features at

each pixel (as we maintain the occurrence of stable struc-

tural and textural features on it). With the difference that

each dictionary holds the frequency of quantized features

(the codes) instead of a continuous feature. Moreover, the

use of LHP helps to adaptively discriminate the features that

are dominant in each neighborhood. For example, on neigh-

borhoods with high structural information, the non-relevant

color information is discarded; while in neighborhoods with

low edginess, the texture information is preserved. For de-

tection, we classify the incoming pixels as background if

they are within the learned code sets, or as foreground other-

wise. An overall flowchart of the proposed method is shown

in Fig. 4.

3.1. Codebased Background Modeling

We model the background as a set of dictionaries B =
{Dx}, for every position x in the image. Our dictionary is

a set of codes that is actively changing during the sequence

processing, unlike common codebook approaches that learn

a static codebook and use it afterwards. Thus, let

Dx = {(c0, w0), (c1, w1), . . . , (cN−1, wN−1)} , (8)

be the dictionary for the pixel at position x, that is com-

prised of tuples (ci, wi), where ci is the ith code with its

own associated weight wi. The dictionaries have a limit of

N codes, to keep them manageable.

3.2. Background Model Updating

For adjusting background changes, such as background

birth and death, the background model needs to be up-

dated frame by frame. Foreground objects in a sequence

can change to background when they stay stationary for a

long time, what we called birth. In contrast, hidden back-

ground appears when an object moves or leaves the scene,

what we called death.

Let Bt = {Dt
x | ∀x} be the current background model

at frame t. Then we compute the next state of the back-

ground model Bt+1 by updating the dictionary Dt
x at each

pixel position x.

Let c = Ct(x) be the code for position x at frame t

computed by (3), and (di, wi) ∈ Dx be the ith tuple of

the corresponding dictionary. We update each associated

weight of all the codes in the dictionary through wt+1
i =

u(c, di, w
t
i), such that

u(c, di, wi) =

{

(1− α)wi + α if m(c, di) = 1

(1− α)wi otherwise,
(9)

where u is the update function, c is the incoming code, di
is the corresponding ith code in the dictionary, wi is the

associated weight, α is the learning rate at which we learn

and forget the codes—similar to previous research [27] on

online learning—, and m(·, ·) is a function that matches the

code c with the dictionary code di. We define m as

m(c, d) =

{

medge(c, d) if c is edge,

minner(c, d) otherwise,
(10)

as c is a code created through (3), we can know whether it

is an edge code by checking its most significant bit, then we

need to check the codes according to their types through

medge(c, d) =

{

1 if c = d,

0 otherwise,
(11)

and

minner(c, d) =

{

1 if |c− d| ≤ Tinner,

0 otherwise,
(12)

where Tinner is a threshold to relax the matching of the quan-

tized intensities.

In case no match was found during this process, a new

code will be added to the dictionary Dx. To do so, the least

significant code on it will be dropped (if it exists), and a new

tuple will be created with the not-found code c and starting

weight α. That is,

Dt+1
x =

{

{Dt
x \ {(dj , wj)}} ∪ {(c, α)} if |Dx| ≥ N,

Dt
x ∪ {(c, α)} otherwise,

(13)

where \ is the set difference operator, (dj , wj) is the tuple

with the minimum weight wj , and |Dx| is the number of

elements in Dx.

4. Foreground Detection

Our proposed background model incorporates both edge

and inner region distributions, so we can mix their advan-

tages for the foreground detection. For example, when the

illumination of the scene varies, we can improve accuracy

of foreground detection by using the robustness of the edge-

based detection, and the use of inner information helps re-

fining the results and filling the holes in the detection. To

achieve these results, our method divides foreground detec-

tion into two steps: candidate foreground construction, and

foreground classification.
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Figure 5. We apply morphological closing to each candidate fore-

ground (edge and inner), and check if the regions overlap. If they

do, we keep them as foreground, otherwise they are considered

noise.

4.1. Candidate Foreground

As every incoming frame is transformed into its coded

version through (3), and its model gets updated through (9),

we can use the code information and the background model

to infer the probability of a code of belonging to the dic-

tionary. Thus, for every pixel in the coded image Ct we

compute its probability of being background, by

p(x) = P
(

Ct(x), Dt
x

)

(14)

where p is the probability map of the incoming frame, P is a

function that returns the probability of belonging to a given

dictionary, and Ct(x) is the code of the pixel x at frame t.

We define the probability P as

P(c,D) =

{

norm(wi) if ∃ d ∈ D : m(c, d) = 1,

0 otherwise,
(15)

where c is a code, D is a dictionary, m(·, ·) is (10), and

norm(wi) =
wi

∑

j wj

, (16)

is a function that normalizes the weights in the given dictio-

nary to approximate them as probabilities.

Finally, the candidate region is

Fcand(x) =

{

1 if p(x) < Tcand,

0 otherwise,
(17)

where Tcand is a threshold of the probability of what is con-

sider foreground, for all x.

4.2. Foreground Classification

We need to refine the candidate foreground, as spuri-

ous edge and non-edge regions may appear. To reduce the

false positives, we find regions of edge and non-edge fea-

tures that are contiguous to each other. Thus, we perform

a closing operation on the candidate regions to fill holes to

some extent, and then find the regions that intersect with

each other—see Fig. 5. Then, we keep the regions that inter-

sected with each other as foreground, and remove the rest.

As we know the origin of each code, due to our code

generation, we can detect and classify each detected pixel

as boundary or inner region. This distinction helps us to

provide more information on the detected objects.

5. Experimental Results

We examined the proposed method performance against

several datasets from the ChangeDetection database [5].

The ChangeDetection database includes a total of six dif-

ferent categories that show typical visual data captured to-

day in surveillance, smart environment, and video analytics

applications. We chose five datasets that contain moving

objects with small background motion, pedestrians move-

ment, abandoned object, moving objects with their shad-

ows, and new background appearance by an un-parking

car, to evaluate the hybrid features used in our proposed

algorithm. In detail, the tested datasets were Highway

(HIGH), Pedestrians (PED), PETS 2006 (P2006), Bunga-

lows (BUN), and WinterDriveway (WD) of ChangeDetec-

tion database. They were extracted from three categories:

Baseline (HIGH, PED, and P2006), Shadows (BUN), and

Intermittent Object Motion (WD). Regarding the HIGH and

PED sequences, both have fewer background movements

but have illumination changes, and the P2006 have objects

that stay a long time and become new background (how-

ever, this behavior is not reflected in the ground truth), and

WD shows real background after a parked object (leaving

car) moves away.

We compared our method against five state of the

art methods. Namely, Pixel-Based Adaptive Segmenter

(PBAS) [8], visual background extractor (ViBe) [2], a mul-

tiple cue system based on SALBP (MultiCue) [19], texture

description with local binary patterns (LBP) [7], and the

classical Mixture of Gaussians (MoG) [27]. To compare the

results with the previous methods we used precision (Pr ),

recall (Re), and reported F -measure against other methods

defined as

Pr =
TP

TP + FP
, (18)

Re =
TP

TP + FN
, (19)

F =
2(Pr)(Re)

Pr + Re
, (20)

where TP are true positives, FP are false positives, and

FN are false negatives, as described by the evaluation pro-

tocol of the ChangeDetection database [5].

5.1. Parameter Setting

We have two sets of parameters in our algorithm, one for

the coding algorithm LHP, and one for the background mod-

eling algorithm ADM. The parameters for the LHP edge

codes are Tedge = 100 which determines what pixels will

be considered edges or inner regions. Higher values of this

parameter will make thinner boundaries, while small values

will produce thicker ones; and Ttern = 100 characterizes the

type of the edges’ gradient response, as we are consider-

ing anything with less than Tedge to be a non-edge region,
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Figure 6. The average F -measure of the proposed method (over

all the datasets) while varying (a) the bit length of inner code [8−

b, where b is as in (7)] and its matching distance (Tinner), (b) the

weight value for initial code and increment of the weight that is

matched (α), and (c) the percentage of the weight to be considered

background (Tcand).

we are using the same value to divide the gradient into two

groups. Regarding the texture part of the LHP code, we

performed several tests [as shown in Fig. 6(a)] to evaluate

the behavior of the detection using different values of b and

Tinner. We found that higher code lengths (b = 1) gave bet-

ter performance in comparison to smaller code lengths. On

the other hand, the threshold for matching the inner codes

Tinner shows a behavior dependent on the code length; for

higher code lengths more flexibility works best (Tinner = 9),

on the contrary for small code lengths a less flexible thresh-

old gives better results (Tinner = 3). That behavior can

be explained as follows. Low code lengths have a higher

quantization; thus, a tighter comparison will be better as

Table 1. Quantitative results of the proposed method: ADM.

Dataset Precision Recall F F (PP)

HIGH 0.914 0.912 0.913 0.942

PED 0.927 0.877 0.901 0.914

P2006 0.720 0.697 0.708 0.713

BUN 0.980 0.919 0.949 0.957

WD 0.640 0.634 0.637 0.668

Avg. 0.836 0.808 0.822 0.839

the codes are already grouped together. On the other hand,

with higher code lengths, we need more flexible thresholds

as there is more diversity in the codes due to less quanti-

zation. Finally, for the rest of the experiments we picked

b = 1 (yielding a code length of seven) and Tinner = 9.

For the background modeling algorithm, we use a dictio-

nary size of N = 10 which means that we can hold up to ten

different modes in our model per pixel. We evaluated sev-

eral learning rates for the algorithm [shown in Fig. 6(b)],

and settle with a learning rate α = 0.006. Moreover,

the threshold to evaluate what is considered background

or foreground in the candidate foreground stage was tested

and reported in Fig. 6(c), and found that the best value was

Tcand = 0.18. From now onward, when we refer to ex-

periments these values were used to perform them (unless

otherwise stated explicitly).

5.2. Quantitative Evaluation

We did a quantitative evaluation following the proto-

col proposed by Goyette et al. [5], and show results with-

out a post processing median filter (ADM) and with it

(ADM+PP). We show on Table 1 several metrics of the

proposed algorithm in all the datasets. Moreover, we com-

pared the performance against other methods that have sim-

ilar cornerstone ideas on the background’s processing (for

a fair comparison), shown in Fig. 7. In general, PBAS [8]

get comparable results with our method, and both obtain

better result than the rest. In specific, we get comparable

results against PBAS on three datasets (HIGH, PED, and

BUN). For the P2006 sequence, our proposed method ab-

sorbed the objects left behind into the background (and the

ground truth does not take into consideration that the ob-

jects should be considered background after some time)—

see Section 5.3 for a deeper discussion. Regardless, we

are the second best in that dataset. Moreover, if we use

a parameter set learned only from the P2006 sequence

(Tedge = Ttern = 61, b = 1, Tinner = 11, α = 0.0005,

and Tcand = 0.12 obtained as in Section 5.1), we get an F -

measure of 85% (without PP) and 87% (with PP)—which is

higher than PBAS. For the WD dataset, we obtained more

than 10% F -measure than the second best. In the latter,

the sequence reveals new background and it should be in-

corporated quickly into the background model to stabilize

it. In comparison to previous methods, we can do it rather
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Figure 8. Average and standard deviation of F -measure compari-

son of different methods.

quickly without compromising the detection of the car that

is considered foreground.

In general, our average result on all the datasets is bet-

ter than previous methods. And we have a smaller standard

deviation—as shown in Fig. 8—in comparison to the sec-

ond best method. That means that our method obtains more

consistent results in comparison to previous methods.

5.3. Qualitative Results

Fig. 9 shows sample frames from all the different meth-

ods in all the datasets. We observe that the proposed method

recovers contiguous regions inside the objects while ob-

taining well-defined boundaries. Moreover, the proposed

method can recover better-blurred parts, like the front wheel

of the bicycle on the PED dataset, while other methods miss

it or recover noisy regions (like MoG).

In the case of the P2006, we can see that our algorithm

absorbs a backpack that was left on the floor. That explains

part of our low F -measure in that sequence, as we used the

same parameters for all the sequences. One way to improve

the results is to tune the learning rate to adjust it to incorpo-

rate stationary objects into the dictionaries more slowly.

Figure 10. Usefulness of hybrid features against stationary objects.

One person (from frame 490) loiters around (until frame 946), and

he has very slow and small movement to drop a backpack on the

floor. At the moment, the background learned his appearance.

However, the edges are different from the learned structure, which

allows its detection (c.f . frame 977 and 1145).

For the WD dataset, new background is revealed as part

of the motion of a parked car leaving. Our proposed algo-

rithm adjusts to the background changes quickly and detects

the new foreground object. However, this sequence presents

a challenge to the previous methods as they recover ghosts

on the foreground and noisy regions.

In general, our dictionary method is more flexible and

simple than previous non-parametric approaches, while still

obtaining comparable results. Moreover, the ability to

change the dictionary with the sequence makes our method

more adaptable in comparison to a learned codebook from

a given set of data. Additionally, the distinction between

edge and inner regions grants us more flexibility to further

process each set of pixels independently.

Our proposed method shows robustness of foreground

detection when the foreground moves very slow and is ab-

sorbed by the background model. Fig. 10 shows a person

that comes to the scene and loiters for several frames un-

til frame 946, and he drops a backpack to the floor. In this

scenario, the inner region of the foreground is learned to

the background easily but edge region is detected as fore-

ground. This example shows the advantages of using hybrid

features, as the drawback of one can be circumvented by the

other.

6. Conclusions

In this paper, we proposed a hybrid method to create a

background model of scenes that jointly models object’s

boundaries as well as its inner regions. The proposed

method uses edge and inner features to create a dictionary

of codes that model the underlying feature distributions at

each pixel. These distributions are used to classify the fore-

ground as the codes of incoming frames that deviate from

the learned distributions. We performed several experi-

ments in which the proposed method obtained promising

results. Additionally, our proposed coding scheme (LHP)

provides joint information of the interest regions (as we de-

tect and classify the detected region simultaneously) that

can be used in further steps, such as pose estimation, be-

havior recognition, among others, for a target application.
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Figure 9. Examples of detection on several datasets on each of the different sequences. (a) HIGH, (b) PED, (c) P2006, (d) BUN, (e) WD

from ChangeDetection database. (In the proposed method the white areas are edge features, and the gray areas are non-edge features.)
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