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Abstract
In this paper, we propose Local Adaptive Hybrid Pattern

(LAHP) to use intrinsic properties, both edge and color,
of each pixel adaptively (inspired from LHP based meth-
ods) while using a single feature representation (inspired
from LOBSTER). The proposed LAHP encodes edge and
color information, and an adaptive factor based on gradi-
ent magnitude together as a single feature. We introduce
a way to calculate the code distance of LNESP to reduce
sensitive to edge distortions. Furthermore, we modify ADM
(Adaptive Dictionary Model) to manage LAHP and extend
a feature matching scheme of ADM to adjacent background
models to reduce sensitivity to background motions. Results
show promising performance than other methods in stan-
dard datasets.

1. Introduction
In these days the number of video-based surveillance

applications is increasing, such as vision-based traffic sys-
tem [1], video segmentation [2], [3], human behavior anal-
ysis [4], [5], etc. Background subtraction is a method to
detect moving objects and to segment their regions. It uses
the subtraction operation between the background model
and the incoming frame. Thus, most cases of vision-based
surveillance require a background modeling technique. The
main challenge of this technique comprises the background
changes due to diversity in illumination, background mo-
tions (e.g., waving trees or rippling water), noise, shadows,
etc. Several methods [1], [2], [6]–[24] have been proposed
to solve this problems using different approaches.

Pixel-based methods model the background using in-
tensity or color information on each pixel. Single-modal
based approaches [6], [7] model the background using sin-
gle model but they suffer from illumination changes. Mix-
ture of Gaussians (MoG) [8] uses k Gaussians models to
represent background variations. However, the selection
∗Corresponding author

of k modes to identify between fast and slow variations
is hard. Kim et al. [9] proposed a codebook based back-
ground modeling by using codewords (color and six tuples)
with variable size to represent background variations. How-
ever, this may generate a large number of codewords in the
model when the background changes. Hoffman et al.’s [11]
work, or the previously proposed Visual Background ex-
tractor (ViBe) [10], model the background using a history
of samples that do not assume a shape on the distributions
based on SAmple CONsensus (SACON) model [25], [26]
and random update strategy. Despite these efforts, pixel-
based methods are not free from introducing illumination-
based errors to the modeled scene.

In contrast, texture- and edge-based methods were pro-
posed as less-sensitive to illumination variations. Heikkilä
and Pietikäinen [12] proposed a mixture of histograms of
Local Binary Patterns (LBP). However, LBP is sensitive
to noise. To reduce this drawback, Scale Invariant Local
Ternary Pattern (SILTP) [13] encodes a texture pattern using
an adaptive threshold based on pixel intensity, but this re-
quires twice the bit length than LBP. Also, Silva et al. [27]
proposed eXtended Center-Symmetric Local Binary Pattern
(XCS-LBP) to be robust to illumination changes and noise.
However, texture-based methods have problems represent-
ing consistency when the image contains flat regions.

Edge-based methods model the background relying on
edges or gradient responses from the image. These ap-
proaches are more stable to illumination changes than pixel-
based methods. However, edges do not have the exact same
position, shape, or length on consecutive frames (we refer
to these problems as edge distortions). Traditional edge-
pixel-based methods use binary edge information [1], [2] or
models [14] on each edge pixel. They have, however, many
false alarms by the edge distortions. To overcome these
problems, Hossain et al. [15] used edge-segment (i.e., con-
catenation of connected edges) instead of edge pixels. This
may misclassify moving-edge-segment as background and
requires higher computation to match each edge-segment.
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Statistical edge-segment-based methods [16], [17] model
the edge variations in the scene to overcome previously in-
troduced drawbacks. Each accumulated region in the model
refines their statistical information to represent its edge-
segment distribution. However, these edge-based methods
are sensitive to background motions and support only fore-
ground edges in the foreground detection as well.

Some studies model background using hybrid ap-
proaches [18]–[24] that mix both pixel and edge (or texture)
at the feature level. Jabri et al. [18] proposed a color and
edge-information based background modeling that models
mean and variance for each color channel and Sobel re-
sponses separately. Javed et al. [19] proposed a hierarchical
modeling approach based on MoG at pixel-level. In region-
level, they count foreground edge pixels that lie on the
pixel-based foreground region. Noh and Jeon [20] proposed
Scene Adaptive Local Binary Pattern (SALBP) based a
multiple cue system. They modeled background using color
and texture (i.e., HSV and SALBP) separately. However,
these methods require different types of background mod-
els. St-Charles and Bilodeau proposed LOBSTER (LOcal
Binary Similarity segmenTER) that used both local binary
similarity pattern (LBSP) [28] and color together as a sin-
gle feature and its modeling based on ViBe. And St-Charles
et al. [22] proposed SubSENSE (Self-Balanced SENsitiv-
ity SEgmenter) to improve LOBSTER based on pixel based
adaptive segmenter (PBAS) [11] that is modified version of
ViBe [10]. But their LBSP takes 16 bits to represent the
texture pattern for each pixel, and their feature matching
is based on logical AND operator and requires satisfaction
of two conditions (i.e., texture and color). Kim et al. [23]
proposed a Local Hybrid Pattern (LHP) based background
modeling that maintains heterogeneous features (i.e., edge
and pixel) adaptively. A code image based on LHP sepa-
rates an image as two different regions (edge and inner), and
encodes their respective properties. And Hong et al. [24]
proposed an edge shape pattern, called Local Neighbor
Edge Shape Pattern (LNESP), for improving edge represen-
tation of the LHP structure. LHP-based methods show the
robustness of illumination changes. However, they are sen-
sitive to dynamic background motion because they do not
have distance calculation for the edge feature matching.

In this paper, we propose Local Adaptive Hybrid Pattern
(LAHP) to use intrinsic properties, both edge and color, of
each pixel adaptively (inspired from LHP based methods)
while using a single feature representation (inspired from
LOBSTER). Previous LHP representation could not use in-
tensity or color information when the pixel is classified an
edge pixel, vice versa. The proposed LAHP is consisted to
three different factors, i.e., edge code, inner code, and gra-
dient magnitude. Then, LAHP at a pixel can use edge and
inner information adaptively by the gradient magnitude on
the pixel. Also, we can classify that the pixel is in edge

Figure 1. 7 bits LNESP representation by reducing duplicated
signed bit from original LNESP. Each index of the neighbor edge
pixel in the original LNESP has the same sign of the direction.

or inner region based on the gradient magnitude. Further-
more, we propose a way that is similarity calculation of
LNESP [24] for taking flexibility on the edge code match-
ing. This may help to reduce edge distortion problem in
consecutive frames.

To adjust the dynamic background motion in the scene,
we modify Adaptive Dictionary Model (ADM) [23] to man-
age LHAP instead of LHP and We calculate background
probabilities based on Gaussian weighting for the nine code
probabilities obtained from nine background models in the
3× 3 region. In the modeling, conservative update strategy
which the background updates when the pixel is classified
to background is applied to model the background by clear
background information, like ViBe [10]. But this strategy
requires background propagation to learn real backgrounds,
i.e., real background regions that appear by a parked car
when it moves. Our feature matching scheme can preform
similar effect like that because we consider adjacent back-
ground models.

Experimental results show better performance that pro-
posed method is robust to dynamic background motions
as well as other complex situations, such as illumination
changes, many foregrounds in the scene, and global camera
movements.

2. Local Adaptive Hybrid Pattern

We propose Local Adaptive Hybrid Pattern (LAHP) to
use edge and pixel properties of the local neighborhoods
adaptively. Note that the edge and intensity information are
inverse properties. The more an edge is present in a local
neighborhood the less meaningful the intensity information
is in that neighborhood, and vice versa. Due to this fact,
we propose an adaptive measuring algorithm for our codes
that adaptively weights the information present in the lo-
cal neighborhoods. Since the gradient magnitude is a reli-
able source of information on the amount of edgeness of a
neighborhood, we exploit it further. Consequently, our code
comprises edge, intensity, and gradient magnitude informa-
tion that we combine to produce our background model and
detect the foreground.



2.1. Code Definition

We design LAHP to represent edge shape and pixel in-
formation adaptively (through the gradient magnitude). Let
C(x) be a LAHP feature vector at pixel location x,

C(x) = {CE(x), CI(x), Gm(x)}, (1)

where CE is an edge code, CI is an inner code, and Gm is a
gradient magnitude at pixel location x.

To create the edge and intensity codes we have sev-
eral options. For instance, Kim et al. [23] designed LHP
to use several edge or texture patterns into the edge code,
and Hong et al. [24] tested several descriptors with their
proposed LNESP code. In our case, for the edge code,
CE, we use 7 bits LNESP representation by reducing du-
plicated directional signed bits, as shown in Fig. 1. Because
each index of the neighbor edge pixel of x in the original
LNESP [24] has the same sign of the direction. Our pro-
posed edge code is generated as

CE(x) =


26sgn

(
d1(x)

)
+

23d1(x) + d2(x)

if
(
Sd1(x) ≥ Ts ∧
Sd2(x) ≥ Ts

)
,

∅ otherwise,
(2)

where d1 and d2 are primary and secondary neighbor edge
pixel indixes (i.e., their primary and secondary edge direc-
tions), Sd{1,2} are the scoring functions that weight each
direction—refer to Hong et al. [24] (1)—, and Ts corre-
sponds to a score threshold—as proposed in the original
LNESP [24]. If either Sd1

(x) or Sd2
(x) are less than Ts,

then we set a default edge code, ∅, because they are not
meaningful enough directions. Then, our proposed edge
code encodes a sign of the direction and indixes of two
neighbor edge pixels which has the first and second highest
score representing edge shape pattern (i.e., principal direc-
tions).

On the other hand, our intensity code, CI, uses RGB
color value, i.e., a 24 bits single channel by concatenating
color values from each channel (R, G, and B) instead of the
grayscale intensity value to get more accurate pixel repre-
sentation. The intensity code on LAHP is defined as

CI(x) = 216R(x) + 28G(x) +B(x), (3)

where R(x), G(x), and B(x) are the red, green, and blue
color values at pixel location x, respectively.

As we mentioned before, the gradient magnitude Gm
grasps the disposition of the local neighborhood, centered
at the pixel x, of containing a majority of edge or intensity
information. To compute the gradient magnitude we use the
response from Sobel operator

Gm =
√
Gx(x) +Gy(x), (4)

where Gx and Gy are the Sobel operators in the horizontal
and vertical directions, respectively.

2.2. Code matching

Previous LHP based methods are sensitive to dynamic
background motions, such as waving trees or flowing water,
because they do not have a similarity measure for the edge
code. That is, previous methods try to match the codes ex-
actly. However, that is not always possible. Instead, for fea-
ture vector distance calculation, we compute edge and in-
tensity distances individually and combine them into a code
distance using adaptive factors, extracted from the gradient
magnitude, as follows. We define the distance between two
codes C1 and C2 as

dist(C1, C2) =ω(G1
m, G

2
m) · distE(C1

E , C
2
E )+(

1− ω(G1
m, G

2
m)
)
· distI(C1

I , C
2
I ),

(5)

where ω is a ratio based on two adaptive factorsG1
m andG2

m
from each codes C1

E and C2
E by

ω(G1
m, G

2
m) =


S
(
max(G1

m, G
2
m)
)

if C1
E 6= ∅ ∧ C2

E 6= ∅,
S(G1

m) if C1
E 6= ∅ ∧ C2

E = ∅,
S(G2

m) if C1
E = ∅ ∧ C2

E 6= ∅,
S
(
min(G1

m, G
2
m)
)

otherwise,

(6)

where ∅ denotes the default code, S is a Sigmoid function
for the weight activation, that is defined as

S(g) =
1

1 + e−Ag−B , (7)

g =
Gm

Gm,max
, (8)

where A and B are slope and shift of Sigmoid function (we
set A = 10 and B = 5, as shown in Fig. 2), g is a normal-
ized gradient magnitude, andGm,max is a maximum possible
gradient magnitude by Sobel operator. And edge distance
distE is computed by direction similarity as defined by

distE =

{
distdirE if C1

E 6= ∅ ∧ C2
E 6= ∅,

dist∅ otherwise,
(9)

distdirE = wE · distdir
1 + (1− wE) · distdir

2 , (10)

distdir
i (d1i , d

2
i ) =

{
ddi if ddi ≤ dmax,

2dmax − ddi otherwise,
(11)

where wE is a weight value for primary edge pixel on
LNESP (we set wE = 0.67 to give twice weight on primary
edge than the secondary edge) and dmax is the maximum
possible directional distance and ddi = |d1i − d2i | is a dis-
tance between two directions from C1

E and C2
E . And inner

distance distI are computed as

distI =


|R1 −R2|+
|G1 −G2|+
|B1 −B2|

if |R1 −R2| < TI

∧ |G1 −G2| < TI

∧ |B1 −B2| < TI,

255 ∗ 3 otherwise,

(12)
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Figure 2. Sigmoid function for the weight adaptively based on gra-
dient response.

where TI is a color channel threshold, R1 and R2 are red
values from code C1 and code C2, respectively, and G and
B are the same as R case. Finally, we normalize the inner
distance distI to have the same distance range with distE
(in this paper [0, 4]).

3. Background Modeling

To model the background we intend to learn the fea-
tures of the local neighborhoods by modifying an Adap-
tive Dictionary Model (ADM). The ADM models the back-
ground by using LAHP codes (instead of raw pixel infor-
mation), and extends a feature matching to adjacent back-
ground models to reduce sensitivity to background motions.
Let B = {Dx} be the dictionary model that is a set of dic-
tionaries, andDx be a dictionary with a limitN on the num-
ber of codes it supports defined as

Dx = {(c0, w0), (c1, w1), . . . , (cN−1, wN−1)}, (13)

where x is a pixel location, Ci is the ith LAHP code and wi

is associated weight.
To adjust the original background appearance that was

hidden regions by a static object, we update the background
model based on a conservative strategy, like ViBe, that up-
dates a pixel only when it is classified as background. This
means that once we learn our background model, we will
only propagate that information into the rest of the scene.
In other words, foreground will never be incorporated into
the background and objects will be always detected as fore-
ground even if they are stationary for a long time. (Note that
this is just a design decision that may suit some scenarios.)

In our proposed method, we try to match the incom-
ing background code c at pixel x to the background model
within the local neighborhood, Nx, of size 3 × 3 cen-
tered at pixel X (i.e., nine different background probabil-
ities) to handle changes in the background. Formally, let
Bt = {Dt

x : ∀x} be the current background model at time
t andBt+1 be the next model at time t+1. For a given pixel
x, we need to update its associated dictionary Dt

x to create
Dt+1

x . We first check if we can find the incoming code c
within the dictionaries, D, in its neighborhood, Nx. That
is,

i∗ = argmin
i
{dist(c, di) : (di, wi) ∈ D,D ∈ Nx}, (14)

where dist is defined as (5). Consequently, (di∗ , wi∗) is the
closest match in the existing dictionaries of the neighbor-
hood of x. (We abuse the notation of the indexes to sim-
plify the definition of the tuples in the set of dictionaries
by assuming that every tuple will have a unique identifier.)
Since we assume that the incoming code is background, it is
guaranteed to exist within the local neighborhood—cf. Sec-
tion 4. Then, we compute Dt+1

x by updating the associated
weight of each tuple in the dictionary (di, wi) ∈ Dt through

wt+1
i = u(wi, di, i

∗), (15)

where

u(wi, di, i
∗) =

{
(1− α)wi + α if i = i∗,

(1− α)wi otherwise,
(16)

where i∗ is the index of the best matched code (14), and
α is the learning rate. If (di∗ , wi∗) /∈ Dx, then we need
to update the dictionary and add the best match. Thus, we
are propagating the existing background through the model.
We can update Dt+1

x , through

Dt+1
x =

{{
Dt

x\
{
(dj , wj)

}}
∪
{
(c, α)

}
if |Dt

x| = N,

Dt
x ∪

{
(c, α)

}
otherwise,

(17)

where \ is the difference set operator, (dj , wj) is the tuple
with the lowest weight wj in Dt

x, and |Dt
x| is the number of

elements in Dx.

4. Foreground Detection
To take advantage of both edge and intensity information

in foreground detection, we use a method proposed by Kim
et al. [23]. We extract foreground candidates based on the
background probability, p, defined by

Fcand(x) =

{
1 if p(x) < Tp,

0 otherwise,
(18)

where Tp is a threshold of the background probability, and
p(x) is the probability map of been background at pixel lo-
cation x. As mentioned above, we match the code c with
nine different background models and find the best match.
We define the probability of finding c at the ith neighbor in
the neighborhood Nx of x as

pi =


norm(wy)

if ∃ (dy, wy) ∈ Di :

argmin
y
{dist(c, dy)},

0 otherwise,

(19)

where c is the incoming code code, Di is the dictionary
at the ith neighbor of x, and norm(wy) is a normalization
function norm(wy) = wy/

∑
j wj . Then, the final proba-

bility of been background for the pixel x is given by the
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Figure 3. The average F -measure of the proposed method over all
the datasets when changing (a) default distance dist∅ between de-
fault code edge shape code in LNESP, (b) color channel threshold
TI, (c) feature distance threshold Tdist, and (c) background proba-
bility threshold Tp.

weighted sum of the probabilities in its neighborhood, such
as

p(x) =
∑
i

pi · Gi, (20)

where i is an index in Nx, pi is defined as in (19), and Gi is
the value of a Gaussian mask with the same dimensions as
Nx.

5. Experimental Results
Proposed method is designed to have less sensitivity of

background motions, such as waving tree or flowing water,
as well as illumination changes or other complex situations.
To evaluate these, we examined the proposed method using
several datasets from the ChangeDetection database [29]. In
detail, we selected six datasets (Boats, Canoe, Fall, Foun-
tain01, Fountain02, and Overpass) from Dynamic Back-
ground category, two datasets (Highway and Pedestrians)
from Baseline category, and two datasets (Badminton and
Traffic) from Camera Jitter category. Datasets in the Dy-
namic category, Both Boats and Canoe sequences include
flowing water as background, Fountain01 and Fountain02
include Water movement fountain, Falling movement of
branches, and overpass includes both water flowing and
waving branches. In Baseline category, Highway includes
complex situations of waving trees, many foregrounds, and
small illumination variation and Pedestrians, and Pedestri-
ans shows static situation with small illumination changes.

We compared our proposed method against other meth-
ods, MoG [8], Visual Background Extractor (ViBe) [10],
LOcal Binary Similarity segmenTER (LOBSTER) [21],
and LNESP [24].

For evaluate the propose method, F-measure (F ) shows
how well the proposed method matches to the ground truth
defined by F = 2(Pr)(Re)/(Pr +Re), where Pr =
TP/(TP + FP ) is precision and Re = TP/(TP + FN)
is recall, where TP are true positives, FP are false posi-
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Figure 4. Examples of detection each of the different dataset se-
quences. (a) Highway, (b) Traffic, (c) Canoe, (d) Fountain02, and
(e) Overpass from ChangeDetection database. GT is ground truth.

Table 1. Quantitative results comparison as F-measure (%)
Methods MoG ViBe LOBSTER LNESP Proposed

Highway 0.9240 0.8831 0.8989 0.8825 0.9155
Pedestrians 0.9536 0.9493 0.9305 0.9053 0.9516
Badminton 0.6912 0.6694 0.7986 0.4517 0.9078

Traffic 0.6636 0.6406 0.7375 0.4052 0.8347
Boats 0.7287 0.4002 0.5822 0.0546 0.6836
Canoe 0.8817 0.8564 0.9299 0.2297 0.9632

Fall 0.4358 0.3990 0.2493 0.0902 0.6034
Fountain01 0.0763 0.1000 0.1651 0.0234 0.5905
Fountain02 0.8035 0.8308 0.8367 0.2241 0.9421
Overpass 0.8719 0.8050 0.7019 0.2590 0.9345

Avg. 0.7030 0.6534 0.6831 0.3526 0.8327

tives and FN are false negatives. In this measurement, TP
are the region of interest (ROI) for all the detected fore-
grounds.

Proposed method several parameters that default dis-
tance dist∅ in LNESP (distance between default code
(CE = ∅) and edge shape pattern code (CE 6= ∅)), color
channel threshold TI, feature distance threshold Tdist, and
background probability threshold Tp. In Fig. 3, we set
dist∅ = 2 as , TI = 15, Tdist = 1.5, and Tp = 0.01 by
practical examination. For the other extra-parameters we
follow setup as Hong et al. [24] for LNESP, i.e., Ts = 40
and w = 0.7, and ADM learning rate α = 0.006.

In Fig. 4, we show qualitative results of other methods
and our proposed method. First, our proposed method im-
proved the performance of LNESP as comparing in last
two rows at Fig. 4. Especially, proposed method shows ro-
bustness to background motions, but the previous LNESP



shows too sensitive because it does not have a distance
measurement between edge codes. For the other meth-
ods, all of other methods are sensitive to camera jitter (as
shown in Fig. 4(b)) that have global background motion by
camera movements. For Canoe and Fountain02 datasets,
other methods have noisy foregrounds or many holes in
foreground regions. Proposed method shows better-defined
foreground region. In Overpass dataset, other methods also
detect branches as foregrounds because it has a lot of move-
ment at branches on a tree but proposed method shows bet-
ter detection results.

Also,we show quantitative evaluations of all the other
methods with our proposed method on Table 1. In all
the datasets, except in Highway, Pedestrians, and Boats
datasets, our proposed method is better than previous meth-
ods.

6. Conclusions
In this paper, we proposed Local Adaptive Hybrid Pat-

tern (LAHP) to use edge and inner information adaptively
for a feature matching based on its gradient magnitude. For
edge code in LAHP, we applied original LESP with dis-
tance calculation to get a flexibility on the edge matching
for reducing edge distortion problems. To have less sen-
sitivity to dynamic background motions, we check adja-
cent background models within 3 × 3 region and calcu-
late its background probability based on them. We per-
formed several experiments in which the proposed method
obtained promising results for the dynamic background mo-
tions as well as other complex situations, such as illumina-
tion changes, many foregrounds in the scene, and global
camera movements.
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