
Image Classification using Graph-based
Representations and Graph Neural Networks

Giannis Nikolentzos1, Michalis Thomas1, Adín Ramírez Rivera3, and Michalis
Vazirgiannis1,2

1 Athens University of Economics and Business, Greece
{nikolentzos,p3150048,mvazirg}@aueb.gr

2 École Poytechnique, France
3 University of Campinas, Brazil

adin@ic.unicamp.br

Abstract. Image classification is an important, real-world problem that
arises in many contexts. To date, convolutional neural networks (CNNs)
are the state-of-the-art deep learning method for image classification
since these models are naturally suited to problems where the coordi-
nates of the underlying data representation have a grid structure. On
the other hand, in recent years, there is a growing interest in mapping
data from different domains to graph structures. Such approaches proved
to be quite successful in different domains including physics, chemoin-
formatics and natural language processing. In this paper, we propose
to represent images as graphs and capitalize on well-established neural
network architectures developed for graph-structured data to deal with
image-related tasks. The proposed models are evaluated experimentally
in image classification tasks, and are compared with standard CNN ar-
chitectures. Results show that the proposed models are very competitive,
and yield in most cases accuracies better or comparable to those of the
CNNs.

Keywords: graph-based representations, graph neural networks, image
classification

1 Introduction

Image classification is a fundamental task in computer vision, where the goal is
to classify an image based on its visual content. For instance, we can train an
image classification algorithm to answer if a car is present in an image or not.
While detecting an object is trivial for humans, robust image classification is
still a challenge in computer vision applications.

In the past years, convolutional neural network architectures (CNNs) have
proven extremely successful on a wide variety of tasks in computer vision [14].
These models are naturally suited to problems where the input data take the
form of a regular grid, and exhibit some inherent statistical properties such as

Pre-print. Published in Int. Conf. of Complex Networks



2 Giannis Nikolentzos et al.

local stationarity and compositionality. Images are examples of data that fall
into this category.

In many domains, data is commonly represented as graphs. This is mainly
due to the rich representation capabilities that these structures exhibit. Graphs
can model both the entities and the relationships between them. Typically, the
vertices of a graph correspond to some entities, and the edges model how these
entities interact with each other. In a collaboration network, such interactions
may for instance correspond to collaborations in a network of scientists. Graphs
are a very flexible means of data representation, and several fundamental data
structures can be thought of as instances of graphs. For example, a sequence
can be thought of as a graph, with one node per element and edges between
consecutive elements. In some cases, even data that does not exhibit graph-like
structure like text is mapped to graph representations [20]. In the past years, a
vast number of learning algorithms has been developed in order to work with
graphs and process the information they represent. There are now available neu-
ral network models which have achieved state-of-the-art performance on many
real-world graph classification datasets [23]. More specifically, an explosion in
research activity in the field of graph neural networks has taken place in the last
few years.

In this paper, we propose to represent images as graphs, and to apply machine
learning algorithms that operate on graphs to the emerging representations.
Specifically, we present different approaches for representing images as graphs,
and we capitalize on well-established neural network architectures developed
for graph-structured data to deal with image classification tasks. The proposed
models exploit properties inherent in images such as stationarity of statistics
and locality of pixel dependencies. We evaluate the proposed models in image
classification tasks, and we compare them with standard CNN architectures.
We also study the robustness of the proposed models to transformations of the
input images and to adversarial attacks. Results show that the proposed models
are very competitive, and yield in most cases accuracies better or comparable to
those of the CNNs. It should be mentioned that this is not the first work to apply
graph neural networks to image data. However, in this paper, we evaluate a large
combination of representations and graph neural network architectures, and to
the best of our knowledge, this is the most complete evaluation to date of graph
representations in computer vision, and graph neural networks for image-related
tasks.

2 Related Work

Graph-based representations of images have a long history in the field of pattern
recognition. A detailed review of these approaches is beyond the scope of this
paper; we refer the interested reader to the work of Conte et al. [5] and Vento
and Foggia [22].

The problem of image classification has been widely studied over the past
years, while several of the proposed approaches borrowed ideas from graph min-



Graph-based Representations of Images and GNNs 3

ing techniques. For instance, some works have proposed the use of graph kernels
and have studied their effectiveness in image classification [4, 7, 12], while oth-
ers have produced new image representations using graph-based features [1,26].
Graph neural networks have been recently applied to image classification tasks.
Specifically, some recent graph neural network models were evaluated on the
benchmark MNIST classification problem [3,6,19]. The main difference between
these works and ours is that they follow different approaches for representing
images as graphs. For instance, Defferard et al. construct in [6] a weighted k-NN
similarity graph where nodes represent pixels and each pixel is connected to its k
most similar pixels in terms of intensity. The weights of the edges are computed
using a function similar to the radial basis function kernel. Simonovsky and Ko-
modakis represented in [19] each image as a point cloud with coordinates (x, y, 0)
where x, y ∈ {0, . . . , 27}, while Bruna et al. subsample the normal 28×28 grid
to get 400 coordinates [3]. Furthermore, all these works apply a single architec-
ture to the MNIST dataset, while in our work, we evaluate a series of message
passing layers and readout functions. Very recently, graph neural networks have
been also applied to other computer vision tasks, such as to the problem of image
matching (i.e., to find correspondences between points in images) [18,25].

3 Models and Representations

In this section, we present the graph representations of images that we employed
and the different models that we applied to these representations. We start by
fixing our notation. Let G = (V,E) be an undirected graph consisting of a set
V of nodes and a set E of edges between them. We will denote by n the number
of nodes and by m the number of edges. The neighborhood of a node v ∈ V is
the set of all vertices adjacent to v, that is N (v) = {u : (v, u) ∈ E} where (v, u)
is an edge between vertices v and u. The graph representations that we utilize
are node-attributed graphs. That is, each node is annotated with one or more
attributes.

3.1 Graph-based Representations of Images

In the past, several approaches have been proposed for mapping images to graph
structures. Almost all existing approaches are ad-hoc and are generally motivated
by performance considerations. One usually adopts the representation that is
shown to perform best in the considered task. In this paper, we experiment with
two different graph representations of images, namely the king’s graph and a
coarsened graph which we derive from the output of some community detection
algorithm. We illustrate the two considered graph representations in Figure 1.

King’s graph. The m×n king’s graph is a graph with mn vertices in which each
vertex represents a square in an m×n chessboard, and each edge corresponds
to a legal move by a king. The m×n king’s graph can be constructed as the
strong product of the path graphs Pm and Pn. In other words, the king’s graph



4 Giannis Nikolentzos et al.

(a) king’s graph (b) coarsened graph

Fig. 1. The two considered graph representations of images: (a) king’s graph, and (b) a
coarsened graph whose nodes correspond to communities extracted from a weighted
variant of the king’s graph.

is a graph whose nodes (except those belonging to the border of the grid) are
connected with their 8 neighborhood nodes by an edge. In our setting, each node
of the graph represents a pixel. Furthermore, each node is annotated with a real
value (i.e., intensity of the pixel) in case of grayscale images or a 3-dimensional
vector (i.e., intensity of the RGB channels) in the case of colored images.

Coarsened graph. In the aforementioned representation, each node corresponds
to a pixel in the input image. Since the number of pixels is usually large (even
for low resolution images), we propose to use community detection algorithms to
reduce the number of nodes in the graph to a representative subsample of pixels
or regions. We start from the aforementioned king’s graph representation and
we transform it into a weighted graph where edge weights capture the similarity
between pairs of pixels. We assume that there is no a priori knowledge about
the components of the input image, and therefore, we use the following function
to compute the weight of the edge between two vertices vi and vj :

wij = 1− ‖xi − xj‖. (1)

Here, we have assumed that the pixel intensities take values between 0 and 1
and, therefore, 0 ≤ wij ≤ 1 holds. Other functions such as the Gaussian kernel
could also be employed. To extract the representative subsample of pixels, we
apply the Louvain method, a well-known community detection algorithm [2].
The algorithm returns a set of communities, and we treat each community as
a node in the new graph. In the new graph, two nodes (i.e., communities) are
linked to each other by an edge if one or more pixels of the one community was
connected to one or more pixels of the second community in the original king’s
graph. Furthermore, each node is annotated with the average of the intensities (or
vectors in case of colored images) of the pixels that belong to the corresponding
community.



Graph-based Representations of Images and GNNs 5

3.2 Models

Graph neural networks (GNNs) have attracted a lot of attention in the past
years. Most GNNs share the same basic idea, and can be reformulated into a
single common framework [9]. A GNN model consists of a series of message pass-
ing (MP) layers. Each one of these layers uses the graph structure and the node
feature vectors from the previous layer to generate new representations for the
nodes. The feature vectors are updated by aggregating local neighborhood infor-
mation. To generate a vector representation over the whole graph, GNNs apply a
readout function to node representations generated by the final message passing
layer. We next present three general models which we will evaluate in image clas-
sification. Note that two of the models (MP+CNN and MP+Pool+Readout) are
specifically designed for graph representations of images that exhibit a grid-like
structure, and cannot be applied to general graphs.

MP+Readout. This model consists of a series of message passing layers followed
by a readout function. Each message passing layer updates the representation
of each node based on the representations of its neighbors and possibly on the
node’s own previous representation. Then, to produce an image representation,
the model applies a readout function to the node representations of the final
message passing layer.

MP+CNN. This model consists of a series of message passing layers followed
by a CNN. The message passing procedure can be seen as a method for up-
dating the features of the pixels. Therefore, after T message passing layers, we
end up with an “image” with as many channels as the hidden dimension of the
final message passing layer. This “image” can be passed on to a standard CNN
model to produce a representation for the input image. Note that this model is
specifically designed for the image classification task where images are modeled
as king’s graphs, and it cannot be applied to general graphs.

MP+Pool+Readout. This model consists of a series of message passing and pool-
ing layers followed by a readout function. A pooling layer is in fact a clustering
layer which replaces a set of nodes with a single node. We incorporate spatial
relations between pixels into clustering, and thus pixels are clustered together
with their neighbors. Clearly, this model can only be applied to images repre-
sented as king’s graphs. Each pooling layer halves the size of each dimension of
the grid. The features of the new nodes are computed using some permutation
invariant function on the cluster’s nodes (e.g., sum, mean or max). Therefore,
this model consists of alternating convolutional and pooling (i.e., clustering) lay-
ers in the same spirit as CNNs are composed of alternating convolutional and
pooling layers. To produce an image representation, the model applies a readout
function to the node representations of the final pooling layer.

Employed message passing layers. In this work, we experimented with
the following five message passing layers: Gated Graph layer [15], GCN [13],



6 Giannis Nikolentzos et al.

GAT [21], GraphSAGE [11], and 1-GNN [16]. Due to space constraints, we
cannot provide more details about the different message passing layers. For a
detailed description of each message passing layer, we refer the reader to their
respective papers.

Employed readout functions. We utilized the following four readout func-
tions: (1) sum: it computes the sum of the node representations; (2) mean: it
computes the average of the node representations; (3) max : this operator com-
putes a vector representation for the graph where each element is equal to the
maximum value of the corresponding elements of all node representations; and
(4) SortPool [24]: this layer generates graph representations of specific size by
first sorting the nodes of the graph, and then retaining only the first k nodes. If
the number of nodes is less than k, zero-padding is applied. To rank the nodes,
the SortPool layer sorts the last element of the nodes’ representations in a de-
scending order.

4 Experimental Evaluation

We perform all our experiments on the MNIST dataset of handwritten digits.
The dataset is split into a training set and a test set of 60 000 and 10 000 images,
respectively. Each image is a 28×28 pixel square. There are 10 digits in total
(from 0 to 9), and therefore 10 different classes. We represent each image as a
28×28 king’s graph as discussed above. All the images share the same underly-
ing graph structure, however, their nodes are annotated possibly with different
attributes. We assign weights to the edges of the king’s graph using the func-
tion shown in (1), and then we apply the Louvain algorithm to obtain the set
of communities and generate the coarsened graph. Note that the Louvain graph
automatically detects the number of communities. Hence, the coarsened graph
representations of some images may have different number of nodes than others
(we found that the number of nodes of the emerging graphs ranges from 10 to
20).

4.1 Model Selection

We created a training and a validation set of images (the two sets are dis-
joint) by randomly sampling 10 000 and 1000 images from the training set of
MNIST, respectively. We trained the models on the 10 000 images and report
their accuracy on the 1000 images of the validation set. The representations of
the images produced by the different models are passed on to a 2-layer multi-
layer perceptron (MLP) with a softmax activation function in the output. For all
configurations, we train the neural networks for 100 epochs. We use the Adam
optimizer with a learning rate of 0.001. The batch size is set equal to 64. All
our dense layers use ReLU activation. To prevent over-fitting, we use dropout
with a rate of 0.2. The hyper-parameters we tune are: (1) the number of mes-
sage passing layers ∈ {2, 3, 4} for MP+Readout and MP+CNN, and ∈ {2, 3} for



Graph-based Representations of Images and GNNs 7

Table 1. Performance of the different combinations of graph representations, message
passing layers and readout functions on the validation set of the MNIST dataset.

MP layer MP+Readout MP+CNN MP+Pool+Readout

Sum Max Mean SortPool Sum Max Mean SortPool

ki
ng

’s
gr
ap

h GAT 80.2 73.8 60.9 41.3 96.6 93.3 91.3 91.0 94.6
GCN 76.4 66.8 52.0 32.7 96.4 93.3 92.8 93.3 93.2
GraphSAGE 79.5 54.6 56.9 33.0 97.1 92.6 91.9 93.3 90.9
1-GNN 95.5 94.5 95.4 63.8 97.1 97.6 97.8 97.5 96.7
Gated Graph layer 96.9 95.1 95.6 67.2 96.4 97.3 97.9 96.7 97.1

co
ar
s.

gr
ap

h GAT 65.9 66.5 65.0 49.8 – – – – –
GCN 61.4 60.9 61.4 46.3 – – – – –
GraphSAGE 59.0 59.1 55.6 42.8 – – – – –
1-GNN 75.1 75.2 75.4 66.2 – – – – –
Gated Graph layer 78.3 78.5 73.2 67.7 – – – – –

MP+Pool+Readout; (2) the number of hidden units of the message passing lay-
ers ∈ {16, 64, 128} for MP+Readout and MP+Pool+Readout and ∈ {4, 16, 32}
for GNN +CNN; (3) the number of hidden units of the MLP layer ∈ {128, 256}
for all models. For MP+Pool+Readout, we also tune the number of sub-sampling
(i.e., clustering) layers ∈ {2, 3, 4}, and the type of the aggregation function of the
features of the clustered nodes ∈ {Sum,Mean,Max}. For the SortPool readout
function, k was set equal to 20. The baseline CNN and the CNN component
of MP+CNN consist of two convolutional layers. The first layer contains 16 fil-
ters of size 4×4, while the second layer contains 32 filters of size 3×3. Both
convolutional layers are followed by max-pooling layers of size 2×2.

Table 1 illustrates the classification accuracies obtained from the different
models. Note that in the case of the coarsened graphs, we can only apply the
MP+Readout models. Indeed, the MP+CNN and MP+Pool+Readout models
cannot be applied since the input data does not take the form of a regular grid
anymore, and moreover, the graph has already been clustered.

We first focus on the MP+Readout model. We find that the king’s graph
representation yields higher accuracies compared to the coarsened graph repre-
sentation. In all cases, the difference in performance is significant. We believe
that this is due to the information loss associated with the coarsening procedure
(groups of nodes and their features are merged together). With regards to the
different message passing layers, our results indicate that the 1-GNN and Gated
Graph layer achieve much higher accuracies than the rest of the layers. Interest-
ingly, these are the two layers that do not use mean aggregators in the message
passing procedure. Mean aggregators capture the distribution of the features in
the neighborhood of a node. Thus, they may fail to distinguish the exact neigh-
bors of a node. We next compare the different readout functions to each other.
We can see that SortPool is the worst-performing function. We believe that this
is due to the fact that it ignores a large number of node representations. In the



8 Giannis Nikolentzos et al.

Table 2. Performance of the dif-
ferent message passing layers of the
MP+CNN model on the validation set
of the MNIST dataset for undirected
and directed king’s graph representa-
tions.

MP layer Undirected Directed

GAT 96.6 96.7
GCN 96.4 96.3
SAGE 97.1 96.8
1-GNN 97.1 97.3
Gated Graph layer 96.4 98.0

Table 3. Performance of the selected
models on the full MNIST dataset.

Model MNIST

CNN 99.1
MP+Readout 96.4
MP+Readout (coarsened graph) 72.7
MP+CNN 99.4
MP+Pool+Readout 98.9

case of the king’s graph representation, Sum reached the highest accuracies, while
Max and Mean reached the second and the third best accuracy levels among all
considered functions. On the other hand, in the case of coarsened graphs, Max is
the best-performing function. The Sum function yielded similarly good results,
while Mean produced slightly worse results than the other two functions.

As discussed above, the MP+CNN model can only be applied to the king’s
graph representation of the images. This model delivers the “best of both worlds”
from GNNs and CNNs. It combines the representational capacity of GNNs with
the ability of CNNs to effectively deal with image data. In Table 1, we can see
that it also achieves very high accuracies, regardless of the employed message
passing layer. Interestingly, message passing layers that failed to achieve high
levels of accuracy when integrated into the MP+Readout model (e.g., GAT,
GCN, GraphSAGE), now achieve accuracies close to the maximum observed.

The MP+Pool+Readout model is also applied only to the king’s graph rep-
resentation of images. Clearly, the MP+Pool+Readout model improves over the
MP+Readout model for all combinations of message passing layers and readout
functions. This highlights that clustering neighboring pixels is highly beneficial
when dealing with image data due to the statistical properties inherent to this
kind of data such as local stationarity and compositionality. It should be men-
tioned that one of the variants of the MP+Pool+Readout model (the one that
uses the Gated Graph message passing layer and the Max readout function)
achieved the highest validation accuracy among all considered models.

We also studied the impact of edge directions on the performance of the
models. We assign directions to all the edges such that they start from nodes on
the top and/or left and end at nodes on the bottom and/or right. We use the
MP+CNN model to evaluate these representations. Table 2 illustrates the ob-
tained accuracies for different message passing layers. We can see that for almost
all layers, the use of directed edges has almost no impact on the classification
accuracy. Notably, in the case of the Gated Graph layer, the use of the directed
king’s graph representation led to an absolute improvement of 1.6%.



Graph-based Representations of Images and GNNs 9

4.2 Image Classification

We next evaluate the architectures that performed best in our model selection
experiments on the full MNIST dataset. The obtained accuracies are shown in
Table 3. We can see that MP+CNN achieves the highest accuracy, followed
by CNN, MP+Pool+Readout, MP+Readout and MP+Readout (applied to the
coarsened graph) in that order. Excluding the model applied to the coarsened
graph, the difference in performance between the rest of the models is relatively
small, indicating that all of them are effective in classifying the images contained
in the MNIST dataset.

4.3 Robustness to Affine Transformations

We next investigate the sensitivity of the proposed models against affine trans-
formations applied to the images of MNIST. Such natural transformations can
be used to completely fool image classification models. We apply three different
types of transformations: scaling, rotation and translation. In all three cases,
we experimented with the full MNIST dataset, i.e., 60 000 training samples and
10 000 test samples. We next present the experimental setup for each one of the
three transformations.

– Scaling : Given a scaling factor k, we scale down all the images of the test set
as follows: for each image, we randomly sample a scaling factor from 1/10 to
1/k by steps of 1/10, i.e., we randomly sample one of the elements of the set
{1/10, 2/10, 3/10, . . . , 1/k} with equal probability. We also scale down 5% of the
images of the training set following the same procedure.

– Rotation: In order to ensure that the perturbed images are not heavily dis-
torted, we restrict our rotations to a maximum of 20°. Specifically, we run a
series of experiments where in each experiment, we rotate all the images of
the test set by a specific amount of degree, while we rotate no images of the
training set.

– Translation: The translation is applied as follows. We first randomly sample
a valid pair of cardinal directions (i.e., northeast, southeast, southwest, and
northwest) with uniform probability (i.e., 0.25 for each pair). Then, the image
is shifted by no more than k pixels along each one of the two directions. For
each direction, the amount of shift is chosen with uniform probability from
{0, 1, . . . , k}. This transformation is applied to all the images of the test set
and to 5% of the training data.

We show the results for the three types of transformations in Figure 2. In-
terestingly, scaling and rotation do not have such a large impact on the per-
formance of the models as translation. We observe that MP+CNN is gener-
ally the most robust approach to the three types of transformations. Specifi-
cally, it outperforms the other approaches across all considered scaling factors
and rotation degrees. It is only outperformed by the other approaches in the
case of largely-translated images (maximum translation greater than 7 pixels).



10 Giannis Nikolentzos et al.

10 20 30 40 50
scaling factor (percent)

92

94

96

98
Ac

cu
ra

cy

Scaling

CNN
MP+Readout
MP+CNN
MP+Pool+Readout

5.0 7.5 10.0 12.5 15.0 17.5 20.0
rotation (in degrees)

75

80

85

90

95

100

Ac
cu

ra
cy

Rotation

CNN
MP+Readout
MP+CNN
MP+Pool+Readout

7.0 7.5 8.0 8.5 9.0 9.5 10.0
max translation (in pixels)

65

70

75

80

85

90

95

Ac
cu

ra
cy

Translation

CNN
MP+Readout
MP+CNN
MP+Pool+Readout

Fig. 2. Performance of the different models under transformations of test set.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

20

40

60

80

100
Ac

cu
ra

cy
CNN
MP+Readout
MP+CNN

Fig. 3. Performance of the different models with respect to the amount of perturbation
applied to the images of the test set.

MP+Cluster+Readout achieves the second best accuracy levels among all mod-
els considered. It outperforms CNN and MP+Readout in the case of scaled and
translated images, while it yields similar results to CNN in the case of rotated
images. MP+Readout seems to be more invariant to scale-transformed images
than CNN since it achieves higher accuracies in this set of experiments. However,
the same does not hold for images that have undergone rotation or translation.
In the latter case, MP+Readout is outperformed by all the other models by very
wide margins.

4.4 Robustness Against Adversarial Examples

It has been shown that many classes of machine learning algorithms are vulner-
able to adversarial manipulation of their input. This can often lead to incorrect
classification. More specifically, neural networks are highly vulnerable to attacks
based on small modifications of the input to the model at test time [10,17]. An
interesting research direction is to investigate how robust the different models
are against adversarial attacks. To this end, we follow the work presented by [10]
and we create a set of adversarial samples by applying perturbations to the im-
ages of the test set as follows: X̃ = X+P where X is an image and P the matrix
that contains the perturbations for the different elements of the image.

It turns out that if worst-case perturbations are applied to test samples,
then a model might produce incorrect predictions with high confidence [10]. We
next present how such worst-case perturbations can be produced. Let θ be the



Graph-based Representations of Images and GNNs 11

parameters of a model, X the input to the model, y the target associated with X
and J(θ,X, y) be the loss function used to train the neural network. An optimal
max-norm constrained perturbation can be obtained as follows:

P = ε sign(∇XJ(θ,X, y)) (2)

We use the above approach to produce 10 000 adversarial samples from the
test images of MNIST. We use different values of ε that range from 0 to 0.3. We
train the models on the standard training set of MNIST (i.e., 60 000 samples),
and then we evaluate them on the set of adversarial samples. Figure 3 illustrates
the obtained results. We observe that the performance of the different models
decreases significantly as the value of ε increases. This is not surprising since the
greater the value of ε, the larger the amount of perturbation that is applied to
the images of the test set. Clearly, MP+CNN outperforms the other models for
the different values of ε. CNN produced the second best results. Note that CNN
and MP+Readout yield an error rate greater than 87% when ε is equal to 0.3.

5 Conclusion

In this paper, we proposed to represent images as graphs, and then to employ
graph neural networks to deal with image-related learning tasks such as image
classification. We evaluated several combinations of graph representations and
graph neural network architectures, and found that the proposed models are
very competitive, and achieve accuracies comparable to those of CNNs.

Acknowledgement

This research is co-financed by Greece and the European Union (European Social
Fund- ESF) through the Operational Programme «Human Resources Develop-
ment, Education and Lifelong Learning»in the context of the project “Reinforce-
ment of Postdoctoral Researchers - 2nd Cycle” (MIS-5033021), implemented by
the State Scholarships Foundation (IKY).

References

1. Niusvel Acosta-Mendoza, Andrés Gago-Alonso, and José E Medina-Pagola. Fre-
quent approximate subgraphs as features for graph-based image classification.
Knowledge-Based Systems, 27:381–392, 2012.

2. Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. Fast unfolding of communities in large networks. Journal of Statistical Me-
chanics: Theory and Experiment, 2008(10):P10008, 2008.

3. Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral net-
works and deep locally connected networks on graphs. In 2nd International Con-
ference on Learning Representations, 2014.



12 Giannis Nikolentzos et al.

4. Gustavo Camps-Valls, Nino Shervashidze, and Karsten M Borgwardt. Spatio-
spectral remote sensing image classification with graph kernels. IEEE Geoscience
and Remote Sensing Letters, 7(4):741–745, 2010.

5. Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. How and why
pattern recognition and computer vision applications use graph. In Applied Graph
Theory in Computer Vision and Pattern Recognition, pages 85–135. 2007.

6. Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neu-
ral networks on graphs with fast localized spectral filtering. In Advances in Neural
Information Processing Systems, pages 3844–3852, 2016.

7. Olivier Duchenne, Armand Joulin, and Jean Ponce. A graph-matching kernel
for object categorization. In Proceedings of the 2011 International Conference on
Computer Vision, pages 1792–1799, 2011.

8. Matthias Fey, Jan E Lenssen, Christopher Morris, Jonathan Masci, and Nils M
Kriege. Deep graph matching consensus. In 8th International Conference on Learn-
ing Representations, 2020.

9. Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. Neural message passing for quantum chemistry. In Proceedings of the 34th
International Conference on Machine Learning, pages 1263–1272, 2017.

10. Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-
nessing adversarial examples. In 3rd International Conference on Learning Repre-
sentations, 2015.

11. Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning
on large graphs. In Advances in Neural Information Processing Systems, pages
1024–1034, 2017.

12. Zaïd Harchaoui and Francis Bach. Image classification with segmentation graph
kernels. In Proceedings of the 2007 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8, 2007.

13. Thomas N Kipf and Max Welling. Semi-supervised classification with graph con-
volutional networks. arXiv preprint arXiv:1609.02907, 2016.

14. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification
with deep convolutional neural networks. In Advances in Neural Information Pro-
cessing Systems, pages 1097–1105, 2012.

15. Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph
sequence neural networks. arXiv preprint arXiv:1511.05493, 2015.

16. Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman go neural:
Higher-order graph neural networks. In Proceedings of the 33rd AAAI Conference
on Artificial Intelligence, pages 4602–4609, 2019.

17. Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. The limitations of deep learning in adversarial settings. In
Proceedings of the 1st IEEE European Symposium on Security and Privacy, pages
372–387, 2016.

18. Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. SuperGlue: Learning feature matching with graph neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4938–4947, 2020.

19. Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in
convolutional neural networks on graphs. In Proceedings of the 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 3693–3702, 2017.



Graph-based Representations of Images and GNNs 13

20. Michalis Vazirgiannis, Fragkiskos D Malliaros, and Giannis Nikolentzos.
GraphRep: Boosting text mining, NLP and information retrieval with graphs. In
Proceedings of the 27th ACM International Conference on Information and Knowl-
edge Management, pages 2295–2296, 2018.

21. Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

22. Mario Vento and Pasquale Foggia. Graph matching techniques for computer vision.
In Image Processing: Concepts, Methodologies, Tools, and Applications, pages 381–
421. 2013.

23. Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S Yu. A comprehensive survey on graph neural networks. arXiv preprint
arXiv:1901.00596, 2019.

24. Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end
deep learning architecture for graph classification. In In Proceedings of the 32nd
AAAI Conference on Artificial Intelligence, pages 4438–4445, 2018.

25. Zhen Zhang and Wee Sun Lee. Deep graphical feature learning for the feature
matching problem. In Proceedings of the 2019 IEEE International Conference on
Computer Vision, pages 5087–5096, 2019.

26. Miao Zheng, Jiajun Bu, Chun Chen, Can Wang, Lijun Zhang, Guang Qiu, and
Deng Cai. Graph regularized sparse coding for image representation. IEEE Trans-
actions on Image Processing, 20(5):1327–1336, 2010.


	Image Classification using Graph-based Representations and Graph Neural Networks

