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Abstract

We propose a novel local feature descriptor, Local
Gaussian Directional Pattern (LGDP), for face recogni-
tion. LGDP encodes the directional information of the
face’s textures (i.e., the texture’s structure) in a com-
pact way, producing a more discriminating code than
other methods. The structure of each micro-pattern
is computed by using a derivative-Gaussian compass
mask, and encoded by using its prominent directions
and sign—which allows it to distinguish among simi-
lar structural patterns that have different intensity tran-
sitions. Moreover, our descriptor extracts several fa-
cial characteristics by varying the size of its mask, to
recover features that may be missed in just one reso-
lution. We construct the face descriptor by concate-
nating the LGDP’s distributions extracted from a uni-
form grid of the face. We perform several experiments
in which our descriptor performs consistently under il-
lumination, noise, expression and age variations.

1 Introduction

In face analysis, a key issue is the descriptor of the
face appearance [8]. The descriptor’s efficiency de-
pends on its representation and the ease of extracting
it from the face. Ideally, a good descriptor should have
a high variance among classes (between different per-
sons), but little or no variation within classes (same per-
son in different conditions).

We classify the descriptors into two classes accord-
ing to their features: global and local. The global-
feature descriptors are called holistic methods. These
methods treat the face as a whole, and extract a de-
scriptor from it in such way. Although these meth-
ods have been studied widely, local descriptors have
gained attention because of their robustness to illu-
mination and pose variations. Heisele et al. showed
the validity of the component-based methods, and how

Figure 1. LGDP code computation.

they outperform holistic methods [3]. The local-feature
methods compute the descriptor from parts of the face,
and then gather the information into one descriptor.
Among these methods are, Gabor features, Elastic
Bunch Graph Matching (EBGM), and Local Binary Pat-
tern (LBP) [1]. LBP achieves better performance than
previous methods, thus it is widely used nowadays.
Newer methods tried to overcome the shortcomings of
LBP, one of them is the Local Directional Pattern (LDP)
introduced by Jabid et al. [4], and extended by Kabir et
al. [5]. This method encodes the directional informa-
tion in the neighborhood, instead of the intensity. These
methods use other information, instead of intensity, to
overcome noise and illumination variation problems.
However, these methods still suffer in non-monotonic
illumination variation, random noise, and changes in
pose, age, and expression conditions. Although some
methods, like Gradientfaces [7], have a high discrimina-
tion power under illumination variation, they still have
low recognition capabilities for expression and age vari-
ation conditions.

In this paper, we propose a novel face descriptor,
Local Gaussian Directional Pattern (LGDP), for robust
face recognition that encodes the structural informa-
tion and the intensity variations of the face’s texture.
This approach allows us to distinguish intensity changes
(e.g., from bright to dark and vice versa) in the tex-
ture, that otherwise will be missed. Furthermore, our
descriptor uses the information of the entire neighbor-



hood, instead of using sparse points for its computation
like LBP. Hence, our approach conveys more informa-
tion into the code, yet it is more compact—as it is six bit
long. Moreover, we use different resolutions for coding
to acquire characteristics that may be neglected by just
one resolution, and combine them to extend the encoded
information. The introduction of multiple encoding lev-
els produces an improvement in the detection process.

2 Local Gaussian Directional Pattern

LBP [1] encodes the local intensity by using the cen-
ter pixel as a threshold for a sparse sample of the neigh-
boring pixels. The few pixels used limit the accuracy of
the method, because it discards most information in the
neighborhood. To avoid these problems, all the neigh-
borhood’s pixels can be used, as LDP [4] does. Al-
though using more information makes LDP more sta-
ble, it still encodes the information in a similar way as
LBP: by marking the maximum absolute directions in
a bit string. This encoding scheme, however, misses
some directional information (the responses’ sign) by
treating all directions equally. Also, it is sensible to
illumination changes, and noise. To avoid these prob-
lems we propose to use a derivative-Gaussian compass
mask to avoid the noise perturbation, and to make our
method robust to illumination changes. Moreover, we,
implicitly, include the sign of the directional responses
to increase the structural information encoded.

The proposed Local Gaussian Directional Pattern
(LGDP) is a six bit binary code assigned to each pixel of
an input image that represents the structure of the tex-
ture and its intensity transitions. Hence, we create the
pattern by computing the edge response of the neighbor-
hood using a derivative-Gaussian compass mask, and by
taking the most positive and negative directions of those
edge responses. This codding scheme is illustrated in
fig. 1. The positive and negative responses provide valu-
able information of the structure of the neighborhood,
as they reveal the gradient direction of bright and dark
areas in the neighborhood. Furthermore, this distinc-
tion, between dark and bright responses, allows LGDP
to differentiate between blocks with the positive and the
negative direction swapped (which is equivalent to swap
the bright and the dark areas of the neighborhood as
shown in fig. 1), because it generates a different code
for each of them, while other methods may mistake the
swapped regions as one. Furthermore, these transitions
occur often in the face, e.g., the top and bottom edges of
the eyebrows and mouth have different intensity transi-
tions.

To describe the face, we combine different sizes of
the mask to compute the LGDP code. The change in

the mask’s size allows our method to capture features
in the face that otherwise may be overlooked. It is vi-
tal to provide descriptive features for long range pixel
interaction. However, neither LBP nor LDP take it into
account. We find that combining the local shape infor-
mation, the relation between the edge responses, and
relating the information from different resolutions can
better characterize the face’s appearance.

2.1 Compass mask

Inspired by Kirsch mask, we use the derivative of
a skewed Gaussian to create an asymmetric compass
mask that we use to compute the edge response on the
smoothed face. This mask is robust against noise and
illumination changes, while producing strong edge re-
sponses. Hence, given a Gaussian mask defined by:

Gσ(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
, (1)

where x, y are location positions, and σ is the width of
the Gaussian bell; we define our mask as:

Mσ(x, y) = G′σ(x+ k, y) ∗Gσ(x, y), (2)

where G′σ is the derivative of Gσ with respect to x, ∗
is the convolution operation, and k is the offset of the
Gaussian with respect to its center—in our experiments
we use one fourth of the mask diameter for k. Then, we
generate a set of compass masks (as shown in fig. 1),
{M0

σ–M7
σ}, by rotating Mσ , 45◦ apart, in eight differ-

ent directions.

2.2 Coding scheme

We generate the code, LGDPσ , by analyzing the
edge response of each mask, M0

σ–M7
σ , that represents

the edge significance in its direction, and by combin-
ing the dominant information. Given that the responses
are not equally important, the presence of a high nega-
tive or positive value signals a prominent dark or bright
area. Hence, we used a fixed position for the positive
(as the three most significant bits) and negative values
(as the three least significant bits) to encode the sign
information. Thus, we define the code as:

LGDPσ(xc, yc) = 8iσxc,yc + jσxc,yc , (3)

where (xc, yc) is the central pixel of the neighborhood
being coded, iσxc,yc is the direction number of the maxi-
mum positive response, and jσxc,yc is the direction num-
ber of the minimum negative response defined by:

iσxc,yc = arg max
i
{M i

σ(xc, yc) | 0 ≤ i ≤ 7}, (4)

jσxc,yc = arg min
j
{M j

σ(xc, yc) | 0 ≤ j ≤ 7}. (5)
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Figure 2. Recognition rate on FERET [6].

2.3 Face descriptor

Each face is represented by a LGDP histogram (LH)
that contains fine to coarse information of an image. It
is achieved by computing the LGDPσ code at n dif-
ferent σn (LGDPσ1,...,σn

) and by concatenating them
into one histogram, a multi-LGDP histogram (MLH),
that is defined as: MLHσ1,...,σn

=
∏n
i=1 Hσi

, where∏
is the concatenation operation, Hσi

is the histogram
of the LGDPσi code, and n is the number of σ used—
in our experiments we limit ourselves to three. Given
that the histogram misses the location information, to
aggregate it to the descriptor, we divide the face image
into a grid of N small regions, {R1, . . . , RN}, and ex-
tract the MLHiσ1,...,σn

from each region, Ri. Finally,
the LH is computed by concatenating those histograms
LH =

∏N
i=1 MLHiσ1,...,σn

. The LH is used during
the face recognition process, by comparing the encoded
feature vector from one person with all other candi-
date’s feature vector with the Chi-Square dissimilarity
measure.

3 Experiments and Results

We evaluate the performance of the proposed al-
gorithm under expression, age, pose, and illumination
variation. We cropped and normalized all images to
100 × 100 pixels. In our experiments, every image is
partitioned into 10×10 regions for all the methods. We
compared the performance of LGDP against LBP [1]
and LDP [4], and also test the illumination robustness
against Gradientfaces [7].

3.1 Neighborhood’s size variation

The increment in the neighborhood size increases
the input data to the code. However, this data incre-
ment not necessarily will lead to incorporate more in-
formation into the code. Hence, we analyze the impact
of different mask sizes for the face recognition prob-
lem. For the proposed method, we use different sizes of
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Figure 3. Comparison of several methods.

the derivative-Gaussian mask that depend on the given
width value, σ. For LBP, we change the radius of the
neighborhood. And for LDP, we increase the outer ring
pattern. The average results of this variation, in the
FERET [6] database, are shown in fig. 2a. This fig-
ure shows that the average accuracy of LDP and LBP
quickly drops as the size of the neighborhood increases.
However, LGDP maintains the accuracy throughout the
size increment. Despite the close difference at the 3× 3
neighborhood, in which LDP and LBP have 0.025%
and 0.24% more recognition rate, the combined LGDP
outperforms these methods. However, LGDP takes ad-
vantage of the sign information, which allows it to dis-
tinguish between regions with different intensity transi-
tions and to compactly encode the sign into the struc-
tural information, providing a more reliable and stable
code, regardless of the neighborhood’s size. Therefore,
in general the increment in the mask does not assure
more discrimination power, if that information is not
well used.

3.2 Results on FERET database

To evaluate the expression, pose, and age variation
robustness of our method, we perform the evaluation
in the FERET [6] database. First, in fig. 2b, we eval-
uate the LGDPσ code. These results also show that
for medium neighborhood’s sizes (0.5 ≤ σ ≤ 1.5) the
recognition rate peaks. The results in fb, are as good
as their combined counterpart—cf . fig. 3a. However, in
the age variation data sets (dupI and dupII) and the illu-
mination variation data set (fc) their accuracy is lower
in comparison to the combined LGDP and the other two
methods—cf . fig. 3a. Hence, we investigate the inclu-
sion of different resolution masks into one code.

Figure 3a shows the results of three different com-
bined LGDPσ1,σ2,σ3

codes. We choose to investi-
gate the combination of the small (LGDP0.3,0.6,0.9),
medium (LGDP0.5,1.0,1.5), and large neighborhoods
(LGDP1.0,1.3,1.6) sigmas. In general, the results of our
codes outperform the results of LDP and LBP in the
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Figure 4. Accuracy on FERET with noise.

expression and age variation data sets. For the inten-
sity variation data set (fc), LBP has the same accu-
racy as the best LGDP code. However, for extreme il-
lumination variation LBP’s performance considerably
drops in comparison to LGDP—cf . fig. 3b. As for
the LGDP combined codes, the medium neighborhood
code (LGDP0.5,1.0,1.5) outperforms the other two. This
high accuracy is due to the balanced σ combination that
recovers small to large characteristics, instead of pick-
ing only small or large characteristics. And the noise
robustness (created by perturbing the probe images with
Gaussian noise) is shown in fig. 4, where LGDP outper-
forms other methods due to its derivative-Gaussian and
multi-resolution mask. Furthermore, LGDP1.0,1.3,1.6

has better performance in the presence of noise over the
other two combined LGDP codes.

3.3 Results on Yale B database

We use the Yale B [2] database to evaluate the robust-
ness of our method against illumination variation. The
difficulty of this database increases for the subsets four
and five, due to the illumination angles that covers half
of the face with shadows. Nevertheless, our method is
able to recover face features in the dark areas, as it does
not rely on intensity like LBP.

We evaluate our method against Gradientfaces, LDP,
and LBP; and we show the results in fig. 3b. For the
last two sets, the recognition rate of LDP and LBP de-
creases significantly. The LDP’s low accuracy is be-
cause the method cannot distinguish intensity changes.
On the other hand, LGDP takes advantage of such inten-
sity changes, as it differentiates between similar struc-
tures with different intensity changes.

The recognition rate difference, in average in the last
two data sets, between gradientfaces and LGDP is of
1.5%. Although gradientfaces has a higher accuracy
than LGDP under different illumination, it is not robust
against expression and age variation. Gradientfaces has
a non-acceptable recognition rate of 7% in fb, and 1%
in dupI and dupII in the FERET database. However,
LGDP showed to be more reliable in different variation
conditions.

4 Conclusion

We introduced a novel encoding scheme, LGDP, that
takes advantage of the structure of the face’s textures
and that encodes them efficiently. LGDP uses direc-
tional information that is more stable against noise than
intensity, to code the different patterns. Additionally,
we use a derivative-Gaussian compass mask to extract
this directional information. This mask is stable against
noise and illumination variation. The code scheme that
we presented, inherently, uses the sign information of
the directions which allows it to distinguish similar
texture’s structures with different intensity transitions.
Moreover, we proposed a face descriptor that combines
the information from several neighborhoods at different
sizes to encode micro patterns at those levels. Hence,
LGDP is able to recover more information and use it to
increase its discriminating power.
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