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ABSTRACT

Deriving an effective facial feature from original face im-
ages is a vital step for a successful automatic facial expres-
sion recognition. In this paper, we proposed a new feature
descriptor, Local Principal Texture Pattern (LPTP), for ex-
pression recognition. We compute the LPTP feature, at each
pixel, by extracting the principal directions of the local neigh-
borhood, and we code the intensity differences on these di-
rections. The mixture of direction and contrast information
makes our descriptor robust against rotation and illumination
changes. Consequently, we represent each expression as a
distribution of LPTP codes. Our experiments demonstrate the
superiority of the proposed feature, on two facial expression
databases, over the existing methods.

Index Terms— Image representation, face expression
recognition, local principal texture pattern, feature extraction

1. INTRODUCTION

Facial expressions are the more natural and immediate way of
communication of human beings. Hence, several fields, such
as, human-computer interaction, data driven animation, and
video indexing, need automatic facial expression recognition
to detect and analyze human emotions and intentions. Due
to the extended necessity, facial expression recognition has
gained much importance in the computer vision field [1, 2].
Regardless of this progress, achieving a high recognition ac-
curacy is still a challenging task.

The objective of facial feature extraction is to acquire face
characteristics which provide an efficient and robust recogni-
tion. There are two common approaches to extract facial fea-
tures: geometric feature-based and appearance-based meth-
ods [2]. The former [3, 4] encodes the shape and locations of
different facial components, which are combined into a fea-
ture vector that represents the face. However, the geometric
feature-based methods usually requires accurate and reliable
facial feature detection and tracking, which is difficult to ac-
commodate in many situations. The appearance-based meth-
ods [5,6] use image filters, either on the whole-face, to create
holistic features, or some specific face-region, to create local
features, to extract the appearance change in the face image.
The performance of the appearance-based methods is excel-

lent in constrained environment but its performance degrades
in environmental variation [7].

Local Binary Pattern (LBP) [8] has been successfully ap-
plied as a local feature extraction method in facial expression
recognition [9]. Despite the robustness to monotonic illumi-
nation of LBP, it is sensitive to non-monotonic illumination
variation, and shows poor performance in presence of ran-
dom noise [10]. A directional pattern (LDP) [11] has been
proposed to overcome the limitation of LBP. However, it suf-
fer in noisy conditions and is sensitive to rotations. Moreover,
it cannot detect different transitions in the intensity regions.
In this paper, we proposed a novel feature descriptor, LPTP,
that takes advantage of both directional and intensity infor-
mation. The combination of both features outperforms the
singled-feature counterparts, LBP and LDP. Additionally, the
proposed method extracts the information from the principal
textures of the neighborhood. The performance of proposed
LPTP feature is evaluated with a machine learning method,
Support Vector Machine (SVM), on two different databases.

2. LOCAL PRINCIPAL TEXTURE PATTERN

LBP feature labels each pixel by thresholding a set of sparse
points of its circular neighborhood, and encodes that infor-
mation in a string of bits. Similarly, LDP encodes the prin-
cipal directions of each pixel’s neighborhood into a eight bit
string. However, these methods choose a fixed start position
for the code creation. This ad hoc construction overlooks the
prominent information in the neighborhood. In contrast, we
create a code from the principal directions of the local neigh-
borhood, and extract the contrast information from these di-
rections. Consequently, we code the principal direction and
the intensity difference of the two principal directions into
one number. This approach allows us to encode the important
texture information of the neighborhood that is revealed by
its prominent directions. Figure 1 shows an abstraction of the
proposed encoding scheme.

We calculate the principal directions of the neighborhood
using the Kirsch compass masks—in eight different direc-
tions as shown in fig. 2. Therefore, we compute the absolute
value of the eight Kirsch mask’s responses, {M0, . . . ,M7},
applied to a particular pixel, and take the two greatest re-
sponses. These directions indicate the principal axis of the



Fig. 1. LPTP codes the principal direction, Pdir, of the lo-
cal texture, and the differences in the principal, D1, and sec-
ondary direction, D2.
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Fig. 2. Kirsch compass masks.

local texture. In each of the two principal directions, we
compute the intensity difference of the opposed pixels in the
neighborhood. This local difference, is equivalent to the local
threshold that LBP does. Unlike the LBP binary encoding, we
encode the difference using three levels (negative, equal, and
positive), which create a more distinctive code for the neigh-
borhood. Then each difference is encoded as

D =


0, if − ε ≤ d ≤ ε
1, if d < −ε
2, if d > ε,

(1)

where D is the encoded intensity difference, d is the actual
intensity difference, ε is a threshold value (in our experiments
we use ε = 15).

Consequently, the code is created by concatenating the bi-
nary form of the principal direction, and the two differences.
This concatenation can be represented by the following oper-
ation

LPTP(x, y) = 16× P (x,y)
dir + 4×D(x,y)

1 +D
(x,y)
2 , (2)

where LPTP(x, y) is the code for the pixel (x, y), P (x,y)
dir is

the index of the principal direction (from 0 to 7) of the neigh-
borhood of the pixel (x, y), andD(x,y)

1 andD(x,y)
2 are the first

and second coded differences (using Eq. (1)) of the neighbor-
hood of the pixel (x, y), respectively.

For example, consider the neighborhood shown in fig. 3a,
we compute the Kirsch mask responses in the neighborhood,
and we show them in their respective orientation in fig. 3b.
The principal, M1, and the secondary, M6, directions are
shown in red and blue, respectively. Then, we compute the
intensity difference of the corresponding pixel intensities in
these directions (as shown by the colored pairs in fig. 3a). In
this case, the differences are: d1 = 143 − 133 = 10, and
d2 = 137 − 141 = −4, which are transformed with Eq. (1)
into D1 = 0, and D2 = 0, assuming a threshold ε = 15.
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Fig. 3. Example of the LPTP code computation. (a) shows
a neighborhood with intensity values, and (b) its responses
after applying the masks, {M0, . . . ,M7}. (c) shows the LPTP
code formed by the coded differences (shown in (a) as colored
pairs), over the principal directions (shown in (b)), and the
principal direction. (Red denotes the principal direction and
blue the secondary direction.)

Finally, we create the LPTP code by concatenating the binary
form of the principal direction index, and the two differences
as shown in fig. 3c, which is equivalent to apply Eq. (2).

3. FACIAL EXPRESSION RECOGNITION USING
LOCAL PRINCIPAL TEXTURE PATTERN

In this section we describe the proposed expression recogni-
tion method using LPTP features. We use the LPTP feature
to represent the facial expressions, and we use Support Vector
Machines (SVM) to classify those expressions.

3.1. Facial expression representation

We represent the facial expressions through a vector of his-
tograms of LPTP features. Consequently, we generate the
LPTP coded face using Eq. (2). Each code contains micro pat-
terns of the face, which represent certain information of each
neighborhood. However, the histogram looses the spatial in-
formation of the coded face. Hence, we divide the face into
several regions, {R0, . . . , RN}, and compute a histogram,
Hi, from each region, Ri, where each bin corresponds to a
different pattern value; in the LPTP feature we have 72 differ-
ent possible code values. Furthermore, to construct the final
descriptor we concatenate the histograms of each region, Ri,
into a single feature vector. The different regions and the his-
togram concatenation are shown in fig. 4.

3.2. Facial expression recognition

We perform a person-independent facial expression recog-
nition, by using a machine learning technique (SVM) to
evaluate the performance of the proposed method. SVM [12]
is a supervised machine learning technique that implicitly
maps the data into a higher dimensional feature space. Con-
sequently, it finds a linear hyperplane, with a maximal mar-
gin, to separate the data in different classes in this higher
dimensional space.

Given a training set ofM labeled examples T = {(xi, yi) |
i = 1, . . . ,M}, where xi ∈ Rn and yi ∈ {−1, 1}, the test



Fig. 4. Face representation using combined LPTP histogram.

data is classified by

f(x) = sign

(
M∑
i=1

αiyiK(xi, x) + b

)
, (3)

where αi are Lagrange multipliers of dual optimization prob-
lem, b is a bias, and K(·, ·) is a kernel function. Note that
SVM allows domain-specific selection of the kernel function.
Although many kernels have being proposed, the most fre-
quently used kernel functions are the linear, polynomial, and
Radial Basis Function (RBF) kernels.

Given that SVM makes binary decisions, multi-class clas-
sification can be achieved by adopting the one-against-one
or one-against-all techniques. In our work, we opt for one-
against-one technique, which constructs k(k − 1)/2 classi-
fiers, that are trained with data from two classes [13]. We
perform a grid-search on the hyper-parameters in a 10-fold
cross-validation scheme for parameter selection, as suggested
by Hsu et al. [14]. The parameter setting producing the best
cross-validation accuracy was picked.

4. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed method with
the images from the Cohn-Kanade Facial Expression (CK)
database [15] and the Japanese Female Facial Expression
(JAFFE) database [16]; and against other three methods:
Local Binary Pattern (LBP) [5], Local Directional Pattern
(LDP) [11], and Gabor features [17]. The former database
consists of hundred university students, in age from 18 to
30 years, of which 65% were female, 15% were African-
American, and 3% were Asian or Latino. The subjects were
instructed to perform a series of 23 facial displays, six of
which were based on descriptions of prototypical emotions
(i.e., anger, disgust, fear, joy, sadness, and surprise). The
last database contains 213 images of seven facial expressions
(six basic facial expressions plus one neutral) posed by ten
Japanese female models. Each image has been rated on six
emotion adjectives by 60 Japanese subjects.

For our experiments, we cropped all the images to
110 × 150 pixels, based on the ground truth positions of
the eyes and mouth, and partitioned the images into 4 × 7

Table 1. Comparison against others methods, in CK and
JAFFE databases.

Method CK JAFFE
6 class (%) 7 class (%) 6 class (%) 7 class (%)

LBP 92.6 ± 2.9 88.9 ± 3.5 86.7 ± 4.1 80.7 ± 5.5
LDP 98.5 ± 1.4 94.3 ± 3.9 85.8 ± 1.1 85.9 ± 1.8
Gabor 89.8 ± 3.1 86.8 ± 3.1 85.1 ± 5.0 79.7 ± 4.2
LPTP 99.4 ± 1.1 95.1 ± 3.1 90.2 ± 1.0 88.7 ± 0.5

Table 2. Average recognition rate of LPTP in CK and JAFFE
databases.

Kernel CK JAFFE
6 class (%) 7 class (%) 6 class (%) 7 class (%)

Linear 98.9 ± 0.9 94.0 ± 2.6 91.3 ± 1.1 91.5 ± 0.7
Polynomial 99.3 ± 1.8 96.4 ± 2.0 92.9 ± 0.6 92.0 ± 0.7
RBF 99.4 ± 1.1 95.1 ± 3.1 90.2 ± 1.0 88.7 ± 0.5

regions. Since LPTP detects the principal components of
the textures, no further alignment of facial features was per-
formed in our data, and since it is robust against illumination
changes, no attempts were made for pre-processing in or-
der to remove such changes. Note that these actions were
taken to demonstrate the robustness of the proposed method
against the corresponding changes. Moreover, we achieve
person-independent classification by dividing the databases
into several partitions and by ensuring that one person’s
expressions are not distributed into two partitions. In our ex-
periments, we randomly divide the images into ten partitions,
and we performed a leave-one-out cross-validation, which is
equivalent to a 10-fold cross validation. Additionally, for the
SVM we used a polynomial kernel of degree one, and the
standard deviation for the RBF kernel was 211 and 213, for
six- and seven-class recognition.

The average recognition rate is shown in table 1, which
demonstrate the superiority of LPTP feature in person-
independent expression recognition over other existing facial
features. This high accuracy is because LPTP extracts the
information from the principal texture of each local neighbor-
hood. Thereby encoding the prominent information, which
makes it a more discriminant feature. In contrast, other meth-
ods use fixed coding points, which may be sub-optimal or
may be influenced by noise. Additionally, the use of the prin-
cipal directions makes LPTP robust against rotations. Given
that we did not perform any pre-processing to remove these
problems, other methods, that are not robust against rotation,
were not able to detect correctly some expressions. Further-
more, in case of six and seven class recognition problem,
LPTP feature achieves excellent accuracy with SVM, and the
detailed results, for different kernels, are shown in table 2.

Additionally, the confusion matrix of 6-class recognition
in the CK database is shown in table 3, which shows that
the classification accuracy of each expression is over 96%.



Table 3. Confusion matrix of 6-class recognition using SVM
(RBF), in CK database.

(%) Anger Disgust Fear Joy Sadness Surprise

Anger 99.5 0 0 0 0 0.5
Disgust 0 100.0 0 0 0 0
Fear 0 0 100.0 0 0 0
Joy 0 0 0 100.0 0 0
Sadness 3.1 0 0 0 96.9 0
Surprise 0 0 0 0 0 100.0

Table 4. Confusion matrix of 7-class recognition using SVM
(RBF), in CK database.

(%) Anger Disgust Fear Joy Sadness Surprise Neutral

Anger 87.3 0 0 0 0 0 12.7
Disgust 0 96.2 0 0 0 0 3.8
Fear 0 0 97.9 0 0 0 2.1
Joy 0 0 1.1 98.1 0 0 0.8
Sadness 0 0 0 0 95.2 0 4.8
Surprise 0 0 0 0 0 100.0 0
Neutral 3.9 1.0 0.8 0 1.8 0 92.5

The lowest accuracy occurs with the sadness expression be-
ing confused with an anger expression. As well, the confusion
matrix of 7-class recognition, on the same database that is
shown in table 4, ensures that other than the anger expression
all other expressions can be classified with reasonable higher
accuracy, over 92%. Despite most expression being confused
minimally with the neutral expression, only the anger expres-
sion had a confusion over 10%.

5. CONCLUSION

In this paper, we proposed a novel local face-feature based on
LPTP code for person-independent facial expression recogni-
tion. LPTP extracts the principal texture information in each
neighborhood, and encodes the prominent characteristics of
the neighborhood; instead of trying to accommodate all avail-
able information, which sometimes may introduce error into
the code, as existing methods do. Moreover, the proposed
LPTP descriptor is insensitive to noise, non-monotonic illu-
mination, and slight rotation variations. Therefore, the fa-
cial expression recognition based on LPTP can achieve higher
recognition accuracy over existing methods.
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