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ABSTRACT

Deriving an effective image representation is a critical step for a successful automatic image recogni-
tion application. In this paper, we propose a new feature descriptor named Local Directional Texture
Pattern (LDTP) that is versatile, as it allows us to distinguish person’s expressions, and different land-
scapes scenes. In detail, we compute the LDTP feature, at each pixel, by extracting the principal
directions of the local neighborhood, and coding the intensity differences on these directions. Con-
sequently, we represent each image as a distribution of LDTP codes. The mixture of structural and
contrast information makes our descriptor robust against illumination changes and noise. We also use
Principal Component Analysis to reduce the dimension of the multilevel feature set, and test the re-
sults on this new descriptor as well.

c© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays several applications need to recognize something
through visual cues, such as faces, expressions, objects, or
scenes. These applications need robust descriptors that discrim-
inate between classes, but that are general enough to incorpo-
rate variations within the same class. However, most of the
existing algorithms have a narrow application spectrum, i.e.,
they focus on some specific task. For example, previous meth-
ods (Jabid et al., 2010; Ojala et al., 1996) designed for face
analysis, cannot be used to recognize scenes, as these meth-
ods have been tuned for fine texture representation. Similarly,
descriptors (Lazebnik et al., 2006; Wu and Rehg, 2011) tuned
for scene recognition under-perform on other tasks. Thereby,
in this paper, we design and test a robust descriptor capable of
modeling fine textures as well as coarse ones.

A wide range of algorithms have been proposed to describe
micro-patterns. The most common ones are the appearance-
based methods (Shan et al., 2009) that use image filters, ei-
ther on the whole-image, to create holistic features, or some
specific region, to create local features, to extract the appear-
ance change in the image. The performance of the appearance-
based methods is excellent in constrained environment but their
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performance degrade in environmental variation (Pantic and
Rothkrantz, 2000). In the literature, there are many methods for
the holistic class, such as Eigenfaces and Fisherfaces. Although
these methods have been studied widely, local descriptors have
gained attention because of their robustness to illumination and
pose variations. The Local Binary Pattern (LBP) (Ojala et al.,
1996) is by far the most popular one, and has been successfully
applied to several problem domains (Shan et al., 2009; Zhao
et al., 2012; Zhou et al., 2008). Despite LBP’s robustness to
monotonic illumination, it is sensitive to non-monotonic illu-
mination variation, and shows poor performance in presence of
random noise (Zhou et al., 2008). Tan and Triggs (2007) pro-
posed an improvement of LBP by introducing a ternary pattern
(LTP) which uses a threshold to stabilize the micro-patterns.
A directional pattern (LDP) (Jabid et al., 2010) has been pro-
posed to overcome the limitations of LBP. However, it suf-
fers in noisy conditions, is sensitive to rotations, and cannot
detect different transitions in the intensity regions. Similarly,
many other methods appeared that extract information and en-
coded it in a similar way like LBP, such as infrared (Xie and
Liu, 2011), near infrared (Zhang et al., 2010), and phase in-
formation (Chan et al., 2009; Zhang et al., 2007). Neverthe-
less, all these methods inherit the sensitivity problem, i.e., the
feature being coded into the bit-string is prone to change due
to noise or other variations. Thereby, the directional-number-
based methods (Ramirez Rivera et al., 2012a,b,c; Rojas Castillo
et al., 2012) appeared as a solution to the common bit-string
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representation, as these methods use an explicit coding scheme
in which the prominent directions are embedded into the code.
However, all these methods still encode only one type of infor-
mation, e.g., intensity or direction, which limits their descrip-
tion capabilities.

Therefore, in this paper, we propose a novel feature descrip-
tor named Local Directional Texture Pattern (LDTP) which ex-
ploits the advantages of both directional and intensity informa-
tion in the image. The combination of both features outper-
forms the singled-feature counterparts, e.g., LBP, LTP, LDP,
among others. The proposed method identifies the principal
directions from the local neighborhood, and then extracts the
prominent relative intensity information. Following, LDTP
characterizes the neighborhood by mixing these two features
in a single code. On the contrary, previous methods rely on
one type of information and use a sensitive coding strategy.
In detail, LDTP encodes the structural information in a local
neighborhood by analyzing its directional information and the
difference between intensity values of the first and second max-
imum edge’s responses. This mechanism is consistent against
noise, since the edge response is more stable than intensity, and
the use of relative intensity values makes our method more ro-
bust against illumination changes and other similar conditions.
Moreover, given that we encode only the prominent informa-
tion of the neighborhood, our method is more robust to changes
in comparison to other methods, as we dispose insignificant
details that may vary between instances of the image. Conse-
quently, we convey more reliable information of the local tex-
ture, rather than coding all the information that may be mis-
leading, not important, or affected by noise. Furthermore, we
evaluate the performance of the proposed LDTP feature with a
machine learning method, Support Vector Machine, on five dif-
ferent databases for expression recognition and three different
databases for scene recognition to demonstrate its robustness
and versatility.

2. Local Directional Texture Pattern

LBP feature labels each pixel by thresholding a set of sparse
points of its circular neighborhood, and encodes that informa-
tion in a string of bits. Similarly, LDP encodes the princi-
pal directions of each pixel’s neighborhood into an eight bit
string. However, these methods only mark which neighbor has
the analyzed characteristic on or off. Furthermore, this ad hoc
construction overlooks the prominent information in the neigh-
borhood, as all the information in the neighborhood (regard-
less of its usefulness) is poured into the code. In contrast, we
create a code from the principal directions of the local neigh-
borhood, similar to the directional numbers (Ramirez Rivera
et al., 2012a,b,c; Rojas Castillo et al., 2012). However, the later
has the problem of using only the structural information of the
neighborhood. Therefore, we propose to extract the contrast in-
formation from the principal directions to enhance the descrip-
tion of our code. In other words, we code the principal direction
and the intensity difference of the two principal directions into
one number. This approach allows us to encode the prominent
texture information of the neighborhood that is revealed by its
principal directions.

To compute LDTP, we calculate the principal directional
numbers of the neighborhood using the Kirsch compass
masks (Kirsch, 1970)—in eight different directions. We define
our directional number as

P1
dir = arg max

i
{Ii | 0 ≤ i ≤ 7}, (1)

where P1
dir is the principal directional number, Ii is the absolute

response of the convolution of the image, I, with the ith Kirsch
compass mask, Mi, defined by

Ii = |I ∗ Mi|. (2)

Thus, we compute the absolute value of the eight Kirsch mask’s
responses, {M0, . . . ,M7}, applied to a particular pixel. More
precisely, we take the two greatest responses, P1

dir and P2
dir.

Therefore, the second directional number, P2
dir, is computed in

the same way, with the difference that we take the second max-
imum response in Eq. 1 instead. These directions signal the
principal axis of the local texture.

In each of the two principal directions, we compute the inten-
sity difference of the opposed pixels in the neighborhood. That
is

d(x,y)
n = I(xPn

dir+
, yPn

dir+
) − I(xPn

dir−
, yPn

dir−
), (3)

where dn is the nth difference for the pixel (x, y) in the nth prin-
cipal direction, I(xPn

dir+
, yPn

dir+
) corresponds to the intensity value

of the pixel (xPn
dir+
, yPn

dir+
), which is the next pixel in the given

principal direction, and I(xPn
dir−
, yPn

dir−
) is the intensity value of

the pixel (xPn
dir−
, yPn

dir−
), which is the previous pixel in the given

principal direction. In other words, the next and previous pixel
positions defined by each direction are

xPn
dir±

=


x ± 1 if Pn

dir ∈ {0, 1, 7},
x if Pn

dir ∈ {2, 6},
x ∓ 1 if Pn

dir ∈ {3, 4, 5},
(4)

yPn
dir±

=


y ± 1 if Pn

dir ∈ {1, 2, 3},
y if Pn

dir ∈ {0, 4},
y ∓ 1 if Pn

dir ∈ {5, 6, 7}.
(5)

This local difference, is equivalent to the local threshold that
LBP does. Unlike the LBP binary encoding, we encode the dif-
ference using three levels (negative, equal, and positive), which
creates a more distinctive code for the neighborhood. Then each
difference is encoded as

D f (d) =


0, if − ε ≤ d ≤ ε

1, if d < −ε

2, if d > ε,
(6)

where D f is the encoded intensity difference, d is the actual
intensity difference, ε is a threshold value (in our experiments
we use ε = 15).

Consequently, the code is created by concatenating the bi-
nary form of the principal direction, and the two differences.
This concatenation can be represented by the following opera-
tion

LDTP(x, y) = 16P1(x,y)
dir + 4D f (d

(x,y)
1 ) + D f (d

(x,y)
2 ), (7)
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00

(f)

Fig. 1. Example of the LDTP code computation (details are in the text). (a)
Original image. (b) Edge responses after applying Kirsch masks. (c) Coded
image. (d) Sample neighborhood (intensity values). (e) Edge responses
of the sample neighborhood shown in (d). (f) Code of the neighborhood
shown in (d).

where LDTP(x, y) is the code for the pixel (x, y), P1(x,y)
dir is the

principal directional number (from 0 to 7) of the neighborhood
of the pixel (x, y), and D f (d

(x,y)
1 ) and D f (d

(x,y)
2 ) are the first and

second coded differences of the neighborhood of the pixel (x, y),
respectively. The length of the code is 72 = 8 × 3 × 3, as the
possible values for the directional number is 8, and 3 for each
difference.

For example, consider the neighborhood shown in Fig. 1(d),
first we compute the Kirsch mask responses in the
neighborhood—we show them in their respective orientation in
Fig. 1(e). The principal, M1, and the secondary, M6, directions
are shown in red and blue, respectively. Then, we compute
the intensity difference of the corresponding pixel intensities in
these directions [as shown by the colored pairs in Fig. 1(d)].
In this case, the differences are: d1 = 143 − 133 = 10, and
d2 = 137 − 141 = −4, which are transformed with Eq. 6 into
D f (d1) = 0, and D f (d2) = 0, assuming a threshold ε = 15.
Finally, we create the LDTP code by concatenating the binary
form of the principal direction index, and the two differences as
shown in Fig. 1(f).

If we opt to include more information into our code by em-
bedding the two principal directional numbers [like previous
methods (Ramirez Rivera et al., 2012a)], then we will increase
its discrimination power too much as well as its length. Thus,
we will diminish its recognition capabilities, because most of
the textures will be coded differently. Consequently, we decided
to maintain a compact code by using the principal directional
information and the contrast information of the two principal
ones.

3. Image descriptor using LDTP

We represent the images through a set of histograms of LDTP
features. Consequently, we generate the LDTP coded image
by using Eq. 7. Each code contains micro patterns of the im-
age, which represent certain information of each neighborhood.
However, the histogram loses the spatial information of the
coded image. Hence, we divide the image into several regions,

Fig. 2. Face representation using combined LDTP histogram.

{R0, . . . ,RN}, and compute a histogram Hi for each region Ri,
where each bin corresponds to a different pattern value—note
that in the LDTP feature we have 72 different possible code
values. Furthermore, to construct the final descriptor we con-
catenate the histograms of each region, Ri, into a single feature
vector through

H =

N

‖
i=0

Hi, (8)

where H is the final descriptor, Hi is the histogram of the LDTP
codes for region Ri, and ‖ is the concatenation operation. An ex-
ample of the different regions and the histogram concatenation
is shown in Fig. 2.

4. Experimental Setup

In order to evaluate the performance of the proposed encod-
ing algorithm, we performed experiments in two different areas:
facial expression and scene recognition. Despite these two be-
ing different domain fields, they have a common approach for
recognition. Both use descriptors and classifiers to identify its
objects of interest. However, the main difference is that the
facial expression recognition needs a descriptor that describes
the micro patterns, while scene recognition needs robustness
to changes and variations. Therefore, we evaluated these two
scenarios to demonstrate the versatility and robustness of our
proposed LDTP, which can describe micro-patterns while main-
taining the robustness in presence of challenging variations. In
the following we explain the setup for the different experiments.

4.1. Facial expression recognition

We perform person-independent facial expression recogni-
tion, by using Support Vector Machines (SVM) to classify the
coded images. SVM (Cortes and Vapnik, 1995) is a supervised
machine learning technique that implicitly maps the data into a
higher dimensional feature space. Consequently, it finds a lin-
ear hyperplane, with a maximal margin, to separate the data in
different classes in this higher dimensional space.

Given that SVM makes binary decisions, multi-class clas-
sification can be achieved by adopting the one-against-one or
one-against-all techniques. In our work, we opt for one-against-
one technique, which constructs k(k − 1)/2 classifiers, that are
trained with data from two classes (Hsu and Lin, 2002). We per-
form a grid-search on the hyper-parameters in a 10-fold cross-
validation scheme for parameter selection, as suggested by Hsu
et al. (2003). The parameter setting producing the best cross-
validation accuracy was picked.

To evaluate the methods, we test the facial expression recog-
nition problem on the Cohn-Kanade Facial Expression (CK)
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database (Kanade et al., 2000). For 6-class prototypical ex-
pression recognition, the three most expressive image frames
were taken from each sequence that resulted into 1224 expres-
sion images. In order to build the neutral expression set, the
first frame (neutral expression) from all 408 sequences was se-
lected to make the 7-class expression data set (1632 images).
Furthermore, we used the extended Cohn-Kanade database
(CK+) (Lucey et al., 2010), which includes sequences for seven
basic expressions. In our experiments, we selected the most
expressive image frame (the last frame is the apex of the se-
quence in this database) from 325 sequences from 118 subjects
from the database for evaluation. These sequences are the ones
with correct labels, all the other sequences are not correctly la-
beled or have a missing labels from the database. Addition-
ally, we used the Japanese Female Facial Expression (JAFFE)
database (Lyons et al., 1998), which contains only 213 images
of female facial expression expressed by ten subjects. More-
over, we tested the expression recognition problem on the MMI
face database (Valstar and Pantic, 2010). In our experiments we
used the Part II of the database, which comprises 238 clips of 28
subjects (sessions 1767 to 2004) where all expressions (anger,
disgust, fear, happiness, sadness, and surprise) were recorded
twice. We also used the CMU-PIE database (Sim et al., 2003),
which includes 41368 face images of 68 people captured under
13 poses, 43 illuminations conditions, and with four different
expressions: neutral, smile, blinking, and talk. For our experi-
ments, we tested two expressions: smile and neutral, as blinking
and talking requires temporal information, which is out of the
scope of this publication. Moreover, we used the poses that are
near frontal (camera 27) with horizontal (cameras 05 and 29)
and vertical rotation (cameras 07 and 09).

For our experiments, we cropped all the images to 110 × 150
pixels, based on the ground truth positions of the eyes and
mouth, and partitioned the images into 5 × 5 regions. Since
LDTP detects the principal components of the textures, no fur-
ther alignment of facial features was performed in our data, and
since it is robust against illumination changes, no attempts were
made for pre-processing in order to remove such changes. Note
that these actions were taken to demonstrate the robustness of
the proposed method against the corresponding changes. More-
over, we achieve person-independent classification by divid-
ing the databases into several partitions and by ensuring that
one person’s expressions are not distributed into two partitions.
In our experiments, we randomly divide the images into ten
partitions, and we performed a leave-one-out cross-validation,
which is equivalent to a 10-fold cross validation.

4.2. Scene recognition

Similarly to the face recognition problem, we represent the
scene as a set of histogram of LDTP features. Consequently, we
generate the LDTP coded scene using Eq. 7. In contrast to the
face analysis, we incorporate more spatial information, to im-
prove classification performance, by adopting spatial pyramid
matching scheme, as Lazebnik et al. (2006) did. They captured
more spatial information by concatenating each micro-block of
the pyramid’s levels. Consequently, it conveys more important
features of the scenes in different resolutions, as Fig. 3 shows.

Fig. 3. Steps for creating the histogram of the scene by using a spatial pyra-
mid.

We normalized the pictures to 256 × 256 pixels, and exploit
the spatial information by creating a three level pyramid. The
idea behind the pyramid is to capture changes in scale that may
appear in different scenes. Thus, the first level has one block,
the second level has four non-overlapping blocks plus one over-
lapping block, and the third level has 16 non-overlapping blocks
plus nine overlapping blocks. The use of the overlapping blocks
is to capture sets of features that may lie in the intersection of
blocks. Moreover, the images are re-sized between different
levels so that all the blocks contain the same number of pix-
els. In total, we have 31 blocks for each image; and we create
a global representation of the image by concatenating the de-
scriptor of each block. The final descriptor is computed using
Eq. 8.

For scene recognition we used the datasets provided by Fei-
Fei and Perona (2005), Lazebnik et al. (2006), and Oliva and
Torralba (2001) to evaluate the performance of the algorithms.
The first database contains eight scenes categories provided by
Oliva and Torralba (2001): mountain (274 images), coast (360
images), highway (260 images), street (292 images), insidecity
(308 images), forest (328 images), opencountry (410 images),
and tallbuilding (356 images), where the size of each image is
256 × 256. The second one contains fifteen scene categories,
and is an extension of the first database by adding seven new
scenes categories: PARoffice (215 images), living-room (289
images), bedroom (216 images), kitchen (210 images), CAL-
suburb (241 images), store (315 images), and industrial (311
images). The first five classes are provided by Fei-Fei and Per-
ona (2005), and the other two are collected by Lazebnik et al.
(2006). Additionally, we used the MIT Indoor Scene dataset
comprised of 15620 images over 67 indoor scenes assembled
by Quattoni and Torralba (2009). We follow their experimental
setting by using 80 images for training and 20 for testing.

5. Experimental Results

We evaluated the performance of the proposed method with
the images from several databases (as explained in Section 4).
To further improve the detection rate, we used PCA (Joliffe,
1986) to discover low dimensional feature of LDTP, and we
also present its results here as LDTP+PCA.

5.1. (Extended) Cohn-Kanade results

The recognition rates of the proposed methods (LDTP and
LDTP with PCA) in comparison with other methods—Local
Binary Pattern (LBP) (Shan et al., 2009), Local Directional Pat-
tern (LDP) (Jabid et al., 2010), Gabor features (Bartlett et al.,
2003), and Local Ternary Pattern (Tan and Triggs, 2007)—are
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Table 1. Comparison against others methods, in CK and JAFFE databases.

Method CK JAFFE

6 class (%) 7 class (%) 6 class (%) 7 class (%)

LBP 92.6 ± 2.9 88.9 ± 3.5 86.7 ± 4.1 80.7 ± 5.5
LDP 98.5 ± 1.4 94.3 ± 3.9 85.8 ± 1.1 85.9 ± 1.8
Gabor 89.8 ± 3.1 86.8 ± 3.1 85.1 ± 5.0 79.7 ± 4.2
LTP 99.3 ± 0.2 92.5 ± 2.5 80.3 ± 1.0 77.9 ± 1.0
LDTP 99.4 ± 1.1 95.1 ± 3.1 90.2 ± 1.0 88.7 ± 0.5
LDTP+PCA 99.7 ± 0.9 95.7 ± 2.9 92.4 ± 1.2 89.2 ± 0.8

Table 2. Confusion matrix of 6-class facial expression recognition using
SVM (RBF) with LDTP in the CK database.

(%) Anger Disgust Fear Joy Sadness Surprise
Anger 99.5 0.5

Disgust 100
Fear 100
Joy 100

Sadness 2.1 97.9
Surprise 100

shown in Table 1. The LDTP codes perform better in the 6-
and 7-class problem on the CK database. To obtain a better pic-
ture of the recognition accuracy of individual expression types,
we present the confusion matrices for 6- and 7-class expression
recognition using the CK database for the best LDTP codes in
Tables 2 and 3. These results show that the 6-class recognition
problem can be solved with high accuracy (as we have a miss
detection of 2% between the sadness and anger expressions).
However, as we include the neutral expression in the 7-class
recognition problem, the accuracy of recognizing five expres-
sions decreases, as the descriptor cannot differentiate between
expression displays that are too mild. This effect is more ev-
ident as the surprise expression is not confused, as it involves
the rise and opening of the eyes, which differentiates it greatly
from other expressions.

In the CK+ dataset, we compared our descriptor against sev-
eral geometric-base methods. Canonical appearance features
(CAPP) and similarity-normalized shape (SPTS) proposed by
Lucey et al. (2010) with the CK+ dataset. Moreover, Chew
et al. (2011) proposed a constrained local model (CLM) based
method. Also, Jeni et al. (2011) proposed a CLM method by
using shape related information only (CLM-SRI). Furthermore,
we compared against a method based on emotion avatar image
(EAI) (Yang and Bhanu, 2012) that leverages the out of plane
rotation. Additionally, we test against the LTP (Tan and Triggs,

Table 3. Confusion matrix of 7-class facial expression recognition using
SVM (RBF) with LDTP in the CK database.

(%) Anger Disgust Fear Joy Sadness Surprise Neutral
Anger 87.5 1.3 0.5 10.7

Disgust 97 3
Fear 0.5 97 2.5
Joy 0.4 98.8 0.8

Sadness 95.2 4.8
Surprise 100
Neutral 2.7 0.5 0.5 1.3 95

Table 4. Recognition accuracy (%) for expressions on the (a) CK+, (b)
MMI, and (c) CMU-PIE.

(a)

Method CK+

SPTS 50.4
CAPP 66.7
SPTS+CAPP 83.3
CLM 74.4
EAI 82.6
LTP 78.7
LDTP 81.4
LDTP+PCA 84.5

(b)

Method MMI

LBP 86.9
CPL 49.4
CSPL 73.5
AFL 47.7
ADL 47.8
LTP 89.5
LDTP 90.5
LDTP+PCA 93.7

(c)

Method CMU

LBP 85.1
LBPw 90.3
LTP 88.8
LDP 88.4
LPQ 90.9
LDTP 90.9
LDTP+PCA 92.9

Table 5. Confusion matrix of 7-class recognition using SVM (RBF), in the
CK+ database.

(%) Anger Contempt Disgust Fear Happy Sadness Surprise
Anger 67.5 7.5 2.5 2.5 17.5 2.5

Contempt 93.75 6.25
Disgust 14.29 82.54 1.59 1.59

Fear 12.5 4.17 70.83 12.5
Happy 1.45 98.55

Sadness 21.43 3.57 14.29 60.71
Surprise 4.6 2.3 1.15 91.95

2007) method—notice that in our experiments we did not use
any preprocessing which degrades the recognition accuracy of
the LTP method as it relies solely on intensity. Table 4(a) shows
that our methods outperform all the other, even thought they are
geometric based, which use a more complex representation of
the face. Yet, our proposed LDTP outperforms them with a
simple representation. Jeni et al. (2011) used a temporal nor-
malization step which yields an accuracy of 96%. However, for
a fair comparison against all the other methods we leave this
score outside of the table, and used the result that do not use the
temporal normalization.

Additionally, we present the confusion matrix of our LDTP
descriptor in Table 5. The worst confusion occurs for anger,
fear, and sadness expressions. These expressions have small
changes in them that difficult the representation from a single
frame. For example, the sadness expression can be seen as
anger as the mouth and eyebrows present similar shape and po-
sition. To improve the accuracy temporal information may be
used to input more cues to identify the expression being per-
formed. Nevertheless, the expressions with high structural dis-
play, such as contempt, happiness, and surprise were detected
with high accuracy.

Overall, the high accuracy of LDTP is due to the use of
prominent information for the coding process. That is, LDTP
extracts the information from the principal axis of the texture of
each local neighborhood. In contrast, other methods use all the
information in the neighborhood, which may be sub-optimal or
influenced by noise.

5.2. Different-resolution facial expression recognition
In real world environments, such as smart meeting and visual

surveillance, the resolution of the images is not high. Thus, we
investigate these scenarios by changing the resolutions of the
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Table 6. Recognition rate (%) in low-resolution (CK database) images.

Resolution Methods

LBP LDP Gabor LDTP+PCA
110 × 150 92.6 ± 2.9 98.5 ± 1.4 89.8 ± 3.1 99.7 ± 0.9
55 × 75 89.9 ± 3.1 95.5 ± 1.6 89.2 ± 3.0 98.8 ± 3.1
36 × 48 87.3 ± 3.4 93.1 ± 2.2 86.4 ± 3.3 98.5 ± 1.4
27 × 37 84.3 ± 4.1 90.6 ± 2.7 83.0 ± 4.3 95.1 ± 1.3
18 × 24 79.6 ± 4.1 89.8 ± 2.3 78.2 ± 4.5 94.8 ± 1.3
14 × 19 76.9 ± 5.0 89.1 ± 3.1 75.1 ± 5.1 94.2 ± 2.7

Cohn-Kanade database images. The images were down sam-
pled from the original images to 110 × 150, 55 × 75, 36 × 48,
27 × 37, 18 × 24, and 14 × 19. We present the experiment re-
sults with six different resolutions on Table 6. As seen in the
table, the proposed code is more robust than other methods un-
der resolution changes. LDTP has an improvement of 3.7% in
average over the second best method in each resolution. Again,
this high performance comes from the extraction and use of the
prominent information in the neighborhood, and our novel cod-
ing scheme.

5.3. JAFFE results

We compared against the same methods used in the CK ex-
periment for the JAFFE experiment. We observed that the
recognition accuracy in JAFFE database, shown in Table 1, is
relatively lower than the CK database. One of the main rea-
sons behind this accuracy is that some expressions in the JAFFE
database are very similar with each other. Thus, depending on
whether these expression images are used for training or testing,
the recognition result is influenced. Nevertheless, our method
still outperforms other methods due to the extraction of the prin-
cipal components to form each local code.

5.4. MMI results

To evaluate the proposed methods on the MMI database,
we compared them against two recent studies: a boosted
LBP (Shan et al., 2009) and several patch-based approaches
based on the former method (Zhongy et al., 2012). Zhongy
et al. (2012) proposed two methods Common Patches (CPL)
and Common and Specific Patches (CSPL) with LBP to pro-
duce a more localized descriptor. Moreover, they use Adaboost
(ADL) to learn certain patches in the face, and code them us-
ing LBP; also they use all available patches (AFL) to create
the descriptor and recognize the expressions. We also com-
pared against the Local Ternary Pattern (LTP) (Tan and Triggs,
2007). Table 4(b) shows that the proposed method outperforms
previous methods by 4.2% to the second best.

For a better comprehension of the performance of our ap-
proach on the MMI database, Table 7 shows the confusion ma-
trix of the LDTP descriptor. We note that, from all the expres-
sions, the fear expression gets confused with surprise, and dis-
gust. This confusion is due to the similarity among the expres-
sions, as some people only rise their eyebrows when surprised,
while others open their mouth, which may lead to some con-
fusion. Hence, to improve this detection, temporal information
may be incorporated.

Table 7. Confusion matrix of 6-class recognition using SVM (RBF) in MMI
database.

(%) Anger Disgust Fear Happiness Sadness Surprise
Anger 96.49 3.51

Disgust 89.13 4.35 2.17 4.35
Fear 4.55 84.09 11.36
Joy 4.76 1.59 93.65

Sadness 1.85 1.85 96.3
Surprise 9.72 90.28

5.5. CMU-PIE results

In the CMU-PIE dataset Sim et al. (2003) we focused on a
two class classification problem: smile and neutral. To evaluate
this experiment we compared our proposed method against sev-
eral local descriptors: LBP (Ahonen et al., 2006), LBPw (Xie
and Liu, 2011), LTP (Tan and Triggs, 2007), LDP (Jabid et al.,
2010), and LQP (Chan et al., 2009).

We show on table 4(c) the results of all the different descrip-
tors in this dataset. We found that the variation in the head poses
influences the result. Moreover, our method achieves the same
performance as the second best method, while applying PCA
improves the result on the recognition by 2%.

5.6. Scene recognition results

Similarly to the face analysis, we used PCA to reduce the
number of bins in the histogram. After reducing the data, we
used 5-fold cross validation and an RBF kernel to classify scene
images. Finally, we report the average value.

We evaluated our methods against several methods that we
describe in the following. Oliva and Torralba (2001) proposed
the Gist descriptor to represent the similar spatial structures
present in each scene category. Gist computes the spectral
information in an image through Discrete Fourier Transform,
and the spectral signals are then compressed by the Karhunen-
Loeve Transform. The CENsus TRansform hISTogram (CEN-
TRIST) (Wu and Rehg, 2011) is a holistic representation and
has strong generalizability for category recognition. CEN-
TRIST mainly encodes the structural properties within an im-
age and suppresses detailed textural information. Addition-
ally, we compared our methods against Lazebnik et al. (2006)
method: the spatial pyramid matching (SPM). In one varia-
tion (SPM-1), they used 16 channels weak features, where their
recognition rate is 66.8%; and in the other experiment (SPM-2),
they increased their recognition rate by 14.6% because they in-
corporated the SIFT descriptor using 400 visual words. Liu and
Shah (2007) used SIFT, as previous method (Lazebnik et al.,
2006) did, with the difference that they used 400 intermediate
concepts to convey more reliable information (SPM-C). Simi-
larly, Bosch et al. (2008) used SIFT and 1200 pLSA topics to
incorporate more information (SP-pLSA).

Tables 8(a) and 8(b) show the comparison on the 8- and
15-class scene data sets, in which our proposed method
(LDTP+PCA) outperforms other methods. Despite the im-
provement being small, our method is more versatile as it can
work on fine textures as well as large image representations.
Additionally, we did not preprocessed the images to extract
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Table 8. Comparison of the recognition accuracy of the methods for (a) 8
and (b) 15 scene categories.

(a)

Method Recognition (%)

Gist 82.60 ± 0.86
CENTRIST 85.65 ± 0.73
LDTP 81.18 ± 0.78
LDTP+PCA 85.81 ± 0.67

(b)

Method Recognition (%)

SPM-1 66.80 ± 0.60
SPM-2 81.40 ± 0.50
SPM-C 83.25 ± N/A
SP-pLSA 83.70 ± N/A
Gist 73.28 ± 0.67
CENTRIST 83.88 ± 0.76
LDTP 73.12 ± 0.69
LDTP+PCA 83.94 ± 0.85

Table 9. Recognition accuracy of the methods for the MIT indoor scenes.
Method Recognition (%)

ROI+Gist 25.0
OB 37.6
CENTRIST 36.9
LPC 39.6
LDTP 38.1
LDTP+PCA 35.7

parts of the images to train our descriptor, as we used the im-
ages as a whole which speeds up the process.

Additionally, we tested our proposed method in the MIT in-
door scene dataset against the ROI annotation and Gist method
proposed by Quattoni and Torralba (2009), the Object Bank
(OB) proposed by Li et al. (2010), and the Local Pairwise Code-
book (LPC) proposed by Morioka and Satoh (2010). Table 9
shows the results of different methods in this dataset. Our pro-
posed method has a similar accuracy to other state of the art
methods. However, it is not the best method in this challeng-
ing dataset—c.f . LPC (Morioka and Satoh, 2010). Neverthe-
less, our method is still better than other similar methods such
as CENTRIST. We noted that the use of PCA in this experi-
mental setting did not boost the result, due to the amount of
different scenes in the training and testing partitions. Due to the
amount of diversity in the scenes the principal components ex-
tracted by PCA did not better represent the data. Moreover, we
tested a combined framework using CENTRIST and our pro-
posed method. In CENTRIST authors used an LBP descriptor,
and we combined it by concatenating ours and LBP descriptor
in the CENTRIST framework. Thus, in that environment we
found an accuracy of 41.5% in the MIT indoor scene dataset.

6. Conclusion

In this paper, we proposed a novel local image descriptor
based on Local Directional Texture Pattern (LDTP) code, that
can work in a wide variety of scenarios. LDTP extracts the tex-
ture information from the principal axis in each neighborhood,
and thus encodes the prominent characteristics of such neigh-
borhood. The main distinction with existing methods is that in-
stead of trying to accommodate all available information, which
sometimes may introduce errors into the code, LDTP includes
only the principal information of the micro-pattern. Conse-
quently, our proposed descriptor can accommodate a large va-

riety of problems. In this paper, we explored its use for facial
expression recognition and scene recognition, and showed that
LDTP can achieve a higher recognition accuracy over existing
methods in the tested databases.
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