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Spatiotemporal Directional Number Transitional
Graph for Dynamic Texture Recognition

Adı́n Ramı́rez Rivera, Member, IEEE , and Oksam Chae, Member, IEEE

Abstract—Spatiotemporal image descriptors are gaining attention in the computer vision community for better representation of
dynamic textures. In this paper, we introduce a dynamic-micro-texture descriptor, i.e., Spatiotemporal Directional Number Transitional
Graph (DNG), which describes both the spatial structure and motion of each local neighborhood by capturing the direction of natural
flow in the temporal domain. We use the structure of the local neighborhood, given by its principal directions, and compute the transition
of such directions between frames. Moreover, we present the statistics of the direction transitions in a transitional graph, which acts
as a signature for a given spatiotemporal region in the dynamic texture. Furthermore, we create a sequence descriptor by dividing the
spatiotemporal volume into several regions, computing a transitional graph for each of them, and represent the sequence as a set of
graphs. Our results validate the robustness of the proposed descriptor in different scenarios for expression recognition and dynamic
texture analysis.

Index Terms—Directional number, dynamic texture, facial expression, spatiotemporal descriptors, transitional graph.
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1 INTRODUCTION

D YNAMIC textures are present in the real world,
in the form of waves, fire, smoke, clouds, etc.

Furthermore, consistent spatiotemporal motion, such as
facial expressions, orderly pedestrian crowds, and vehic-
ular traffic, can be seen as a generalization of dynamic
textures and can be similarly represented. Moreover,
the ability to discriminate dynamic patterns based on
visual cues affects several applications, such as human-
computer interaction, biometrics, psychology, surveil-
lance, and video retrieval and indexing [1], [2].

The analysis of spatiotemporal textures involves sev-
eral challenges (e.g., combination of motion and appear-
ance features, insensitivity to illumination, and com-
putational simplicity). To address these problems, we
propose a new spatiotemporal descriptor called a Di-
rectional Number Transitional Graph (DNG) that creates
a signature for the dynamic patterns by aggregating
the spatiotemporal directional changes of the dynamic-
micro-textures. As the principal directional-indexes pro-
vide information in the local neighborhoods, the tempo-
ral changes in these directions (between consecutive time
steps) may identify the dynamic texture that generated
such changes. We can encode the transition of directions
between frames as a set of transitions of directional
numbers. The accumulated transitions represent unique
characteristics of a pattern. Consequently, we model
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nicaciones, Universidad Diego Portales, Santiago, Chile (e-mail:
adin.ramirez@mail.udp.cl).

• O. Chae is with the Department of Computer Engineering, Kyung Hee
University, South Korea (e-mail: oschae@khu.ac.kr).

• This work was supported by a grant funded by CONICYT, under FONDE-
CYT Iniciación No. 11130098, and by the Technological Innovation
R&D Program (S2176380) funded by the Small and Medium Business
Administration (SMBA, Korea).

transitions in a graph that acts as a signature for the
texture by aggregating the changes from one directional
number to another. For more complex dynamic patterns,
such as facial expressions, we propose a sequence de-
scriptor using the set of graphs extracted from a spa-
tiotemporal grid placed over the sequence. Thus, DNG
is a robust and general descriptor that models dynamic
textures as well as complex dynamic patterns, such as
facial expressions.

1.1 Related work

In contrast to static textures, dynamic textures vary not
only in the spatial distribution of texture elements, but
also with regard to organization and dynamics over
time. Some existing methods that model the dynamics of
image sequences are optical flow, spatiotemporal geom-
etry, spatiotemporal filtering, spatiotemporal transforms,
and model-based methods [2].

Optical-flow-based methods [3], [4] are popular due to
their efficiency and characterization of dynamic patterns.
Some methods [4] combine normal flow and periodicity
features to characterize the magnitude, directionality,
and periodicity of motion. Others [3] use spatiotemporal
multi-resolution histograms based on velocity and accel-
eration fields calculated by a structure tensor method. In
contrast to the goal of our proposed descriptor, recogni-
tion is highly tuned to a particular spatial appearance.
Furthermore, optical flow and its normal flow compo-
nent assume brightness constancy and local smoothness,
which are generally difficult to justify. However, these
methods model motion only, ignoring texture and ap-
pearance.

Several dynamic texture-recognition methods repre-
sent the global spatiotemporal variations in texture as a
linear dynamic system. Most previous efforts, however,
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have limited their experimentation to cases where the
pattern samples are collected from the same viewpoint.
Therefore, much of the performance is dependent on the
spatial appearance captured by these models rather than
the underlying dynamics [5], [6]. To address this issue,
more complex models have emerged [7]. Despite these
efforts, these methods suffer when the sequences present
non-overlapping views, i.e., they are not shift-invariant.

Nearly all of the research on dynamic texture recog-
nition has considered textures to be homogeneous, i.e.,
the spatial locations of the image regions are not con-
sidered. In this light, Zhao et al. [8] proposed the use
of local binary patterns (LBP) in three orthogonal planes
(TOP) to overcome the computational complexity of the
volumetric descriptor. Similar methods that used other
features, like phase quantization [9], or Fourier transfor-
mations [10] have been proposed. A recent work [11]
uses nine planes to analyze the volume characteristics.
Norouznezhad et al.’s work [11] relies on the cross-
sections of several planes to compute the Histogram
of Oriented Gradients. However, these algorithms use
complex methods to encode the volumetric data [8], and,
unlike our proposed method, depend on cross-sections
of the temporal and spatial domains to reduce such
complexity at the cost of decoupling the motion and
appearance dynamics. Consequently, we avoid the use
of cross-sections by considering the relations of entire
neighborhoods and include that information into our
graph-based descriptor.

Similarly, previous research on facial expression recog-
nition focused on static images [12]. For appearance-
based features, researchers used static micro-pattern de-
scriptors to extract the appearance of the faces, us-
ing various techniques including Gabor-wavelets [12],
LBP [13], local directional patterns [14], and directional
numbers [15]–[18] among others. Recent research [19]
focused on the analysis of dynamic image sequences
to extract facial expressions, as temporal information
may enhance recognition accuracy. For instance, several
geometry-based dynamic feature methods have been
proposed [20], [21]. In contrast, volume features [8],
[22]–[24] appeared as the extension of appearance-based
features in a dynamic environment, in which the image
sequence is modeled as a dynamic texture. However,
most of these methods produced their codes from cross-
sections of the spatial and temporal data, and then re-
combined the data through histogram concatenation in
later coding stages (i.e., TOP-based methods).

1.2 Contribution

Current methods capture motion and spatial information
separately, and combine them through concatenation of
histograms into a final descriptor. Therefore, our main
contribution is a new descriptor that models the dynamic
information in image sequences by jointly representing
the structure and motion of each micro-pattern. That is,
our method captures the transition frequency between

features, thus simultaneously modeling the spatial and
temporal information. Our contributions are summa-
rized as follows. First, we propose a spatiotemporal
version of the directional numbers [15]–[18] to code
the salient directions of each local neighborhood, which
avoids the common LBP-like bit string marking codes
that are sensitive to changes in the data being coded.
Second, we experiment with several sets of masks [25],
[26] to extract the principal directions and analyze the
results. Further, we propose a new 3D mask to extract the
spatiotemporal directional responses in nine symmetry
planes of a volume, which outperforms existing masks
in our experiments. Finally, we use a weighted directed
graph to model the changes in the directional numbers
for a given region.

2 DIRECTIONAL NUMBER GRAPH

A directional number [15]–[18] of a local neighborhood is
the index of the direction containing important informa-
tion. However, for spatiotemporal images, the direction
does not necessarily lie in the spatial domain. Thus, we
can extend the notion of direction to the spatiotemporal
domain (see Section 2.2). In previous works, directional
numbers were computed using the edge response from
masks in the spatial domain. In this paper, we propose
a new approach to compute directional numbers and
subsequently embed spatiotemporal information. Specif-
ically, we are proposing a 3D compass mask that extracts
the spatiotemporal edge response over nine planes of
symmetry for the given volume.

Current methods compute a histogram on each cell of
a grid on the cross-sections of the data as a descriptor.
However, this histogram represents spatiotemporal rela-
tions only at the grid level, ignoring lower level relations.
In contrast, we propose a graph-based approach as a new
sequence descriptor, which models the changes in the
directional numbers (at low levels) over time in a given
region of the volume. Figure 1 shows an abstraction of
the proposed method.

2.1 Compass masks
In order to extract the directional number responses,
we use different compass masks in 2D and 3D, which
give the principal directions of the neighborhood in the
spatial and spatiotemporal domain, respectively. For the
former, we chose a Kirsch compass mask [25] to compute
the spatial directional response of a given neighborhood
in eight different directions. However, any 2D mask
could be used. Ideally, this mask allows the analysis of
the spatial directional changes over time by creating a
transitional graph over the spatial directional numbers.

On the other hand, we can extend the directional
analysis to the spatiotemporal domain by using a 3D
mask. We propose to use a cubic mask (3 × 3 × 3) that
computes the plane response of the 3D neighborhood.
We consider the nine planes of symmetry of the cube
to extract the primitive motion patterns represented by
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Fig. 1: We extract the spatiotemporal directional numbers for each frame, and divide the sequence into a 3D grid. For each defined region, we
extract a DNG. Finally, the graphs are transformed into a one-dimensional vector to create the image sequence descriptor.

(a) (b)

Fig. 2: (a) A 3D compass mask gives nine spatiotemporal directional
responses corresponding to each of the symmetry planes of a cube. (b)
Approximation of the mask that gives the XT-plane response.

the spatiotemporal directional numbers given by the
compass mask shown in Fig. 2(a). Thus, we create the
compass mask with a Gaussian-like weight on the direc-
tion of interest over the differencing planes, given by

Mz=1
1 =

 1 2 1
2 4 2
1 2 1

 , (1)

Mz=2
1 =

 0 0 0
0 0 0
0 0 0

 , (2)

Mz=3
1 =

−1 −2 −1
−2 −4 −2
−1 −2 −1

 , (3)

where Mz=1,2,3
1 denotes each z plane of the cube matrix

M1 that results in nine masks. Figure 2(b) shows the
coefficients of the XY-plane mask (M1), and the other
masks are the result of rotating M1 by 45◦ about each
axis.

Thereby, each 3D mask gives the difference over the
sides of its central plane and emphasizes the central-
normal direction of the plane. We also experimented
using the 3D Sobel mask proposed by Jetto et al. [26]
in order to evaluate the efficacy of our mask. In contrast
to our proposed mask, the 3D Sobel only emphasizes the
central point, which limits its performance, as discussed
in Section 3.

2.2 Transitional graph
Given a volume (spatiotemporal image) I and a (spatial
or spatiotemporal) compass mask M = {Mm | 1 ≤
m ≤ n}, which can compute n different edge directions,
we define a directional number as the index m of the

mask Mm that has a significant edge response. Thus, the
directional number provides prominent information for
a given neighborhood. A salient feature of our method
is that, in the spatiotemporal domain, a local maximum
gradient on the space-time domain indicates the relevant
motion and spatial features. Thus, we create a map of
salient information by extracting the principal directional
number for the volume through

ix,y,t = arg max
m

{Im(x, y, t) | 1 ≤ m ≤ n}, (4)

where ix,y,t is the principal directional number for the
voxel (x, y, t), and Im is the result of convolving the
volume I with the mth mask Mm through

Im = I ∗Mm. (5)

Note that the convolution may be performed frame by
frame in the case of a 2D compass mask or in the volume
using a 3D mask (see Section 2.1 for details regarding the
masks).

We analyze the salient changes in the volume over
time by tracking the changes in the directional numbers
of a given pixel over time. That is, we examine the
transitions of the directional numbers in the voxels of
the volume. Thus, we define a transitional graph G =
(V,E,w) for the volume I , comprising the set of vertices
V = {vm | 1 ≤ m ≤ n} equal to the possible directional
numbers defined by the compass masks, the directed
edges E = {(vj , vk) | ∀vj , vk ∈ V }, and the weight func-
tion w : E → R+ that assigns a real number to each edge
e ∈ E. Consequently, the transitional graph is a weighted
and directed graph over the possible directional num-
bers defined by the compass mask. Thus, we learn the
behavior of salient features by studying their changes
over time and compiling statistics of these changes in the
graph’s weights. Moreover, the frequency of the changes
acts as a signature of the volume’s dynamic patterns, as
different dynamic textures will produce different salient
features with distinct changes.

Therefore, we determine the weights of the graph G,
for all vj , vk ∈ V , using

w(vj , vk) =
∑

(x,y,t)∈I

δj,k(ix,y,t, ix,y,t+1), (6)

where w(vj , vk) is the weight from vertex vj to vk, and

δj,k(j
′, k′) =

{
1, if j = j′ ∧ k = k′

0, otherwise
(7)
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determines whether the given directional numbers j′

and k′ change according to the given values j and k.
That is, the weight measures the frequency of the voxels
that change their directional number ix,y,t to ix,y,t+1.
In practice, the accumulation of the changes from one
directional number to another can be performed in the
adjacency matrix that represents the graph. Thus, each
row and column is accessed using the index of the
directional number of the represented vertex, and the
graph can be efficiently constructed while scanning the
volume. Moreover, we normalize the resulting adjacency
matrix to accommodate variations in the region sizes
using

w′(vj , vk) =
w(vj , vk)

NrMrLr
, (8)

where w′ is the normalized weight, w is the original
weight, and Nr, Mr, and Lr are the dimensions of the
region r being analyzed. In general, we obtain an 8× 8
adjacency matrix of the corresponding graph using the
Kirsch mask, and another 9×9 adjacency matrix for both
3D masks.

2.3 Sequence Descriptor
To create the sequence descriptor, we first divide the
volume into R = NML different blocks {B1, . . . , BR} (as
shown in Fig. 1). Secondly, we compute the transitional
graph, Gr, for each block Br. Moreover, we transform
the graph’s adjacency matrix, Ar, into a vector, Âr, by
concatenating the rows of the matrix, without any loss
of generality. The sequence descriptor D is the concate-
nation of all the adjacency matrices of the partitioned
volume, such that

D =

R

‖
r=1

Âr, (9)

where ‖ is the concatenation operator. We can accommo-
date more information by aggregating the descriptors of
lower-order directional numbers. That is, we include, for
example, the second principal directional number into
the descriptor by recomputing Eq. 9 using the second
maximum in the computation of the directional number,
Eq. 4, instead. Thus, if we denote the sequence descriptor
of the oth directional number (first, second, etc.) by Do,
the overall descriptor is

D =

O

‖
o=1

Do, (10)

where O is the maximum order considered to produce
the descriptor. In our experiments, we used up to a
second-order descriptor, i.e., we used the first and second
directional numbers (O = 2), because the use of two
principal axes per neighborhood better characterizes sev-
eral patterns. Consequently, the analysis and collection
of the changes in the principal axis over time reveals an
underlying signature of the dynamic pattern. The final
descriptor represents the transition frequencies between

TABLE 1: Accuracy (%) of DNG using different SVM kernels (Inter., χ2,
and RBF), and a histogram descriptor (Hist.) using SVM (with an RBF
kernel) and nearest neighbor (NN) classifiers on the texture datasets.

Mask Classifier 8-Class 9-Class SIR DynTex++ Avg.

K
ir

sc
h

Inter. 98.0 97.6 81.3 91.0 91.9
χ2 97.9 98.7 82.3 91.1 92.5
RBF 97.7 99.1 81.3 92.2 92.6
Hist. (SVM) 94.3 93.0 67.8 67.9 80.8
Hist. (NN) 96.6 97.9 71.0 68.6 83.5

So
be

l

Inter. 99.1 98.6 89.5 92.5 94.9
χ2 99.1 98.0 89.5 92.7 94.8
RBF 98.8 99.2 89.0 92.9 95.0
Hist. (SVM) 96.7 96.7 84.3 80.2 89.5
Hist. (NN) 95.8 97.0 84.5 79.3 89.2

9
Pl

an
es

Inter. 99.0 98.7 90.8 93.0 95.4
χ2 99.8 98.8 89.5 93.1 95.3
RBF 99.4 99.6 89.0 93.8 95.4
Hist. (SVM) 97.1 96.8 85.3 81.0 90.1
Hist. (NN) 94.8 96.2 84.5 79.7 88.8

TABLE 2: Dynamic texture classification accuracy (%) for the (a) UCLA
and (b) DynTex++ databases.

(a)

Method 8-Class 9-Class SIR

PEGASOS [6] 99.0 95.6 N/A
BoS [7] 80.0 N/A N/A
DFS [27] 99.0 97.5 73.8
HOG-NSP [11] 98.7 98.1 78.2

DNGK
SVM 97.7 99.1 81.3
NN 97.7 96.9 81.3

DNGS
SVM 98.8 99.2 89.0
NN 96.3 97.6 83.0

DNGP
SVM 99.4 99.6 89.0
NN 97.0 98.1 87.8

(b)

Method (%)

PEGASOS [6] 63.7
LBP-TOP [11] 71.2
DFS [27] 89.9
HOG-NSP [11] 90.1

DNGK
SVM 92.2
NN 89.8

DNGS
SVM 92.9
NN 89.8

DNGP
SVM 93.8
NN 90.2

features, while the TOP-based histograms represent only
the frequency of features. Specifically, our DNG contains
structural and motion information in each element of the
vector, while TOP-based methods mainly contain spatial
or temporal information in each bin.

3 EXPERIMENTS

We evaluated the proposed method for dynamic texture
and facial expression recognition. We used support vec-
tor machines (SVMs) and a nearest neighbor classifier
(NN) with Euclidean distance to evaluate the perfor-
mance of the proposed methods. Given that SVM makes
binary decisions, we achieved multi-class classification
by adopting a one-against-one technique. We performed
a grid-search on the hyper-parameters in a 10-fold cross-
validation scheme in the training set for parameter se-
lection. The parameter setting producing the best cross-
validation accuracy was selected. Moreover, we used a
second-order DNG descriptor for all experiments.

3.1 Dynamic texture
We evaluated the performance of the proposed method
for dynamic texture recognition in two different
databases: UCLA [5] and DynTex++ [6]. We used a grid
of size 1 × 1 × 1, performed a 50/50 split on the
datasets for use as training and testing, and reported the
average output over 20 trials. To select the best kernel,
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we tested the histogram intersection (Inter.), Chi-square
(χ2), and RBF kernels in all the texture databases to
evaluate our DNG descriptors (using Kirsch, DNGK ;
3D Sobel, DNGS ; and a nine-plane mask, DNGP ; with
second order descriptors), as shown in Table 1. In these
scenarios, the best recognition was achieved by the RBF
kernel, followed closely by the χ2 kernel. Therefore,
in the following experiments, we used the RBF kernel
for the SVM. Additionally, we computed a histogram
of the directions of the mask as a descriptor, instead
of our DNG descriptor, to evaluate the contribution
of the transitions. As shown in Table 1, the proposed
method outperformed the histogram descriptor (Hist.),
using SVM (with RBF kernel) and NN classifiers, on all
the texture databases.

3.1.1 UCLA

The UCLA database [5] contains 50 dynamic texture
classes, each with four grayscale video sequences cap-
tured from different viewpoints. All the samples we used
were cropped from the videos, and each had a size of
48 × 48 × 75. We evaluated UCLA using nine- and eight-
class [6], [7] and shift-invariant-recognition (SIR) [1]
breakdowns using a random partition of the classes, 50%
for training and the remaining 50% for testing over 20
runs. The nine-class breakdown uses all the sequences
grouped by type regardless of viewpoint. The eight-class
excludes the “plants” class, since it contains too many
sequences and thus may bias the results. Further, the
SIR breakdown was created with shift-invariant textures
by cropping the samples from the left and right portions
of each video. In the latter, we performed comparisons
between the left and right locations alone. This set up
yields a two step test involving training with the left
part and testing with the right one, and vice versa.

To evaluate our descriptors, we compared them
against the dynamic fractal spectrum method (DFS) [27],
DL-PEGASOS [6], a bag of dynamical systems (BoS)
based method [7], [28], and a histogram of oriented
gradients over nine planes of symmetry (HOG-NSP)
method [11], which extracts the HOG feature over the
cross-sections of the volume. Table 2(a) shows that the
proposed methods perform better in all the breakdowns
in comparison to previous methods. Moreover, we noted
that the use of the 3D masks in the different spatiotempo-
ral planes produced better result than the simple spatial
response analysis, as DNGP has an average improve-
ment of 3% over DNGK in all the breakdowns.

We show the confusion matrix for DNGK and DNGP

in Table 3 in the SIR breakdown, as it is the more
challenging breakdown. The greatest confusion occurs
for DNGK in the smoke sequences, due to the use
of spatial information alone. For example, the spatial
texture of smoke was confused with fire and plants, and
boil and fountain were confused with plants. However,
these issues are diminished by incorporating dynamic
information through the use of the spatiotemporal masks

TABLE 3: Confusion matrix using SVM (RBF) in the SIR-UCLA.

(a) DNGK

(%) boil fire flower fount plant sea smoke water wfalls
boil 43.75 50 6.25

fire 75 18.75 6.25

flower 66.67 33.33

fount 7.5 45 42.5 2.5 2.5

plant 0.93 9.26 1.39 87.96 0.46

sea 100

smoke 25 50 25

water 100

wfalls 100

(b) DNGP

(%) boil fire flower fount plant sea smoke water wfalls
boil 75 25

fire 93.75 6.25

flower 29.17 8.33 62.5

fount 2.5 87.5 10

plant 0.93 6.48 92.59

sea 100

smoke 12.5 87.5

water 100

wfalls 100

in DNGP . Nevertheless, any 3D mask does not guar-
antee the best results. For example, the diversity of
textures proved to be too difficult for the 3D Sobel mask
(DNGS), as shown in Table 2(a). Nevertheless, for the
SIR breakdown of UCLA with both 3D masks, DNGS

and DNGP have comparable recognition rates, but both
showed a major confusion of flowers with plants.

Moreover, we also tested our methods with a nearest
neighbor (NN) classifier to differentiate the contribution
of the DNG descriptors and the SVM; the results are
shown in Table 2(a). In that case, DNGP is, on average,
2.6% better than HOG-NSP, and the other two DNG
descriptors demonstrate general improvement compared
to HOG-NSP. Nevertheless, the NN classifier has a lower
recognition rate for the proposed methods than its SVM
counterpart.

3.1.2 DynTex++

The DynTex++ dataset proposed by Ghanem and
Ahuja [6] is a challenging dataset comprised of 36
classes of dynamic texture, each of which contains 100
sequences of a fixed size 50 × 50 × 50. We used the
same experimental settings as Ghanem and Ahuja [6] in
the evaluation, that is, we use SVM as the classifier, train
on 50% of the dataset, and test on the rest over 20 trials.
We did not resize the sequences.

Similar to the experiment in the UCLA database, we
compared against DFS [27], DL-PEGASOS [6], and HOG-
NSP [11] and additionally included an LBP from three
orthogonal planes (LBP-TOP) [8]. Table 2(b) shows the
accuracy of all the methods, in which the proposed
method DNGP outperforms previous works by more
than 3%. Moreover, we report the best accuracy for the
HOG-NSP that relies on multiple kernel learning. How-
ever, when the HOG-NSP uses a simpler grid division
framework (similar to that of our proposed method),
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TABLE 4: FER accuracy (%) for (a) CK+ and (b) MMI.

(a)

Method (%)

LBP-TOP [24] 90.8
VLPQ [24] 91.4
LPQ-TOP [24] 89.6
STLMBP [24] 92.6
CLM-SRI [21] 96.0
DNGK 100
DNGS 100
DNGP 100

(b)

Method (%)

B-LBP [13] 86.9
CPL [31] 49.4
CSPL [31] 73.5
LFEA [20] 94.1
VTB [22] 95.0
DNGK 97.6
DNGS 97.6
DNGP 97.6

its accuracy drastically decreases to 78.7%, so that even
the use of NN in our methods demonstrates better
performance. Furthermore, the DNGS method performs
better than the 2D mask method, DNGK , as the Dyntex++

database contains more structured textures in compar-
ison to UCLA dataset. Therefore, our proposed DNG
code scheme is more robust and accurate with a simpler
extraction mechanism than previous methods.

3.2 Facial expressions

We performed experiments to evaluate the performance
of the proposed algorithm under six- and seven-class fa-
cial expression recognition (FER). We tested our method
in three different databases: Extended Cohn-Kanade
(CK+) [29], MMI [30], and Oulu-CASIA [23] (using visual
light and near-infrared datasets). Moreover, we cropped
and normalized all the images to 110 × 100 pixels, based
on the ground truth positions of the eyes and mouth
(when available) or using a face detector. We tested
several partition combinations (using all permutations
of 3, 5, 7, 9, and 11 parts for the spatial grid and 3, 5,
and 7 parts for the temporal grid, as shown in Fig. 3) on
the CK+ and MMI databases for our three masks, and
reported the average values. Based on this experiment,
we chose to use the best combination 11 × 3 × 7
for the rest of the experiments, and an illustration of
the grid is shown in Fig. 3(d). For all the databases,
we performed every experiment 10 times and reported
the average values after randomly choosing 90% of the
database for training and the rest for testing using SVM
as a classifier.

3.2.1 Extended Cohn-Kanade
We used the extended Cohn-Kanade database
(CK+) [29], which includes 325 sequences from
118 subjects demonstrating seven basic expressions
(happiness, sadness, surprise, anger, disgust, fear, and
contempt). To evaluate our descriptor, we compared
it against several methods, such as LBP-TOP [8],
volume local phase quantization (VLPQ) [9], local
phase quantization from three orthogonal planes
(LPQ-TOP) [9], a spatiotemporal local monogenic
binary pattern method fusing real and imaginary
data (STLMBP) [24], and an extended constrained-
local-model algorithm with action unit normalization

TABLE 5: Confusion matrix of DNGP on MMI.

(%) Anger Disgust Fear Happiness Sadness Surprise
Anger 98.21 1.79

Disgust 95.65 4.35

Fear 97.92 2.08

Happiness 100

Sadness 5.36 94.64

Surprise 1.43 98.57

(CLM-SRI) [21]. Table 4(a) shows that our DNG-
based methods outperformed all the other methods.
Moreover, the lower accuracy of the methods that use
three orthogonal planes for the dynamic information
representation may be due to their combination of
the spatiotemporal information in the histogram level
alone. Instead, the mixture of spatial and temporal
data in early stages of the coding process enriches the
sequence descriptor, as the spatiotemporal patterns
remain coupled rather than being split due to the cross-
sectioning process in TOP-based methods. Furthermore,
Guo et al. [20] reported an accuracy of 97.2% for their
longitudinal atlases on the non-extended Cohn-Kanade
database, and Ji and Idrissi [22] reported a 97.3%
accuracy for their LBP-based method. Our methods
outperformed these on the more complex version of the
database, recognizing all seven expressions instead of
only six.

3.2.2 MMI
Moreover, we tested the expression recognition problem
on the MMI face database [30]. In our experiments,
we used Part II of the database, which comprises 238
sequences of 28 subjects (sessions 1767 to 2004) where
all expressions (anger, disgust, fear, happiness, sadness,
and surprise) were recorded twice.

We compared our proposed methods against other re-
cent studies, such as a boosted LBP method (B-LBP) [13],
several patch-based approaches, common patches (CPL),
and common and specific patches (CSPL) [31], longi-
tudinal facial expression atlases (LFEA) [20], and an
LBP-based vertical time backward method (VTB) [22].
Table 4(b) shows that DNG outperforms previous meth-
ods. Additionally, our method is not boosted in any
way, unlike these other methods. Moreover, we use a
wide variety of images and all expressions to evaluate
our performance, while Shan et al. [13] used a reduced
set. The worst confusion was observed for the DNGP

descriptor for disgust and sadness expressions, as shown
in Table 5.

3.2.3 Oulu-CASIA
The Oulu-CASIA facial expression database [23] contains
six expressions (surprise, happiness, sadness, anger, fear
and disgust) from 80 people captured by near-infrared
(NIR) and visible light (VIS) cameras; it is comprised
of 1440 and 1438 image sequences from VIS and NIR
datasets, respectively. All expressions were captured in
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c
r 3 5 7 9 11

3 96.83 96.98 97.1 97.16 97.26

5 97.4 98.05 97.63 97.73 97.65

7 98.37 98.35 98.03 97.66 97.95

9 98.38 98.4 97.88 98.03 97.93

11 98.43 98.63 98.13 98.08 97.95

(a) t = 3

c
r 3 5 7 9 11

3 92.81 96.65 96.95 97.32 97.54

5 97.18 97.65 97.58 97.58 97.36

7 98.03 98.00 97.83 97.86 97.83

9 98.02 98.03 97.76 97.76 97.71

11 98.61 98.31 97.96 98.11 97.86

(b) t = 5

c
r 3 5 7 9 11

3 93.47 96.72 97.24 97.45 97.66

5 97.14 97.97 97.71 98.03 97.93

7 98.14 98.16 97.96 98.11 97.98

9 98.78 98.46 98.06 98.11 97.98

11 98.81 98.41 97.83 98.01 97.86

(c) t = 7 (d)

Fig. 3: (a) (b) (c) Average FER accuracy (%) using different grid resolutions (r, c, and t represent row, columns, and time, respectively). (d)
Illustration of the best grid in a facial image sequence.

TABLE 6: FER accuracy (%) for the Oulu-CASIA (VIS) database.

Method Normal (%) Weak (%) Dark (%)

LBP-TOP [24] 76.2 65.3 56.3
LFEA [20] 75.5 61.8 57.7
STLMBP [24] 79.9 64.6 62.0
DNGK 96.4 97.7 93.3
DNGS 98.5 99.0 98.6
DNGP 97.8 98.9 98.6

TABLE 7: Confusion matrix of DNGS on Oulu-CASIA (VIS) dark.

(%) Anger Disgust Fear Happiness Sadness Surprise
Anger 98.75 1.25

Disgust 2.53 97.47

Fear 97.81 0.63 1.25 0.31

Happiness 0.63 98.73 0.63

Sadness 0.63 99.38

Surprise 0.63 99.38

three different illumination conditions (normal, weak,
and dark).

We compared our algorithm against the best version
of LBP-TOP proposed by Zhao et al. [23], in which they
use a sparse representation classifier, LFEA [20], and
STLMBP [24]. Table 6 shows the results in the three
different illumination conditions, in which the proposed
method considerably outperforms the others. Interest-
ingly, DNGS and DNGP present higher accuracy for
weak illumination than for the normal illumination. This
may due to non-homogeneous illumination throughout
the datasets. In the dark setting (Table 7) DNGS demon-
strated the greatest confusion among all our descriptors.

We also experimented on the NIR part of the Oulu-
CASIA database and compared our DNG-based methods
against LBP-TOP [23] and STLMBP [24]. Table 8 shows
that DNGP surpassed the other methods. Moreover, our
proposed coding scheme is more stable in comparison to
other methods with similar recognition accuracy in the
three datasets, around 97%, 98%, and 98% for the 2D and
3D masks, respectively. This stability results from the
constancy of the near-infrared images in the presence of
light changes. Furthermore, Table 9 shows the confusion
matrices of the NIR images, which demonstrated better
recognition accuracy per expression compared with the
VIS counterpart. In the three datasets, the fear and
sadness expressions were most often confused.

4 CONCLUSION

In this paper, we introduced a new descriptor for image
sequences that jointly models the motion and spatial

TABLE 8: FER accuracy (%) for Oulu-CASIA (NIR) database.

Method Normal (%) Weak (%) Dark (%)

LBP-TOP [24] 78.6 73.3 70.4
STLMBP [24] 78.7 70.4 72.3
DNGK 97.0 97.5 97.3
DNGS 98.5 99.2 98.6
DNGP 98.5 99.2 98.7

TABLE 9: Confusion matrix of DNGP on Oulu-CASIA (NIR).

(a) normal

(%) Anger Disgust Fear Happiness Sadness Surprise
Anger 97.5 1.25 1.25

Disgust 99.38 0.63

Fear 98.1 0.63 1.27

Happiness 0.63 99.38

Sadness 0.63 0.63 0.63 97.47 0.63

Surprise 0.63 99.38

(b) weak

(%) Anger Disgust Fear Happiness Sadness Surprise
Anger 98.75 0.63 0.63

Disgust 1.25 98.13 0.63

Fear 99.37 0.63

Happiness 0.63 99.38

Sadness 0.63 99.37

Surprise 100

(c) dark

(%) Anger Disgust Fear Happiness Sadness Surprise
Anger 100

Disgust 1.9 96.2 1.9

Fear 99.38 0.63

Happiness 98.73 0.63 0.63

Sadness 0.63 0.63 98.75

Surprise 0.63 99.38

structure of dynamic patterns. The main advantage of
the proposed Directional Number Transitional Graph
descriptor is the extraction of low-level features that are
later combined using a two-layer descriptor including
a graph that models the intrinsic motion of the lower
features and a spatiotemporal grid that maintains the
spatiotemporal relations between the created regions.
Moreover, we explored two different approaches to rep-
resent the lower features through directional numbers:
(1) using pure spatial information (2D compass mask)
and (2) extracting spatiotemporal directional information
as the planar response in nine principal directions (3D
compass mask). Our results show that the inclusion
of motion and spatial information in early stages of
the coding process enhances the recognition rates of
dynamic patterns compared to using cross-sections and
subsequent mixing mechanisms.
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