

Graph Learning Network

A Structure Learning Algorithm

Darwin Saire Pilco and Adın Ramırez Rivera

Ƴ @adn_twitts

June 2019

Institute of Computing University of Campinas

Existing Graph Neural Networks

a Do not support extreme variations over the graph

Fixed graph's structure (over the network)

We overcome these issues by ...

- 🔀 Iteratively predict features and adjacency
- Repeat (until diminishing returns, five times according to our experiments)

Proposal: GLN

Loss Functions:

- Intersection over Union (IoU) of adjacency
- Class-balanced Cross-Entropy (HED)
- **≡** Regularization

$$H_{\mathrm{int}}^{(l)} = \sum_{i=1}^{k} \frac{\sigma_{l}}{\sigma_{l}} \left(\hat{A}^{(l)} H_{i}^{(l)} \mathbf{W}_{i}^{(l)} \right)$$

$$H_{\text{local}}^{(l)} = \sigma_{l} \left(\hat{A}^{(l)} H_{\text{int}}^{(l)} \mathbf{U}^{(l)} \right)$$

$$H_{\text{global}}^{(l)} = \sigma_{l} \left(H_{\text{local}}^{(l)} \mathbf{Z}^{(l)} \right)$$

$$A^{(l+1)} = \sigma_l \left(\mathbf{M}^{(l)} H_{\text{local}}^{(l)} Q^{(l)} H_{\text{global}}^{(l)}^{\mathsf{T}} \mathbf{M}^{(l)}^{\mathsf{T}} \right)$$

- Learnable matrices
- Non linearities
- Embedding function:

We can predict surfaces

• Not predicted edges (FN), extra predicted edges (FP), and correctly predicted ones.

...and communities

1 Not predicted edges (FN), extra predicted edges (FP), and correctly predicted ones.

...and segment (simple) images

i Not predicted edges (FN), extra predicted edges (FP), and correctly predicted ones.

Lets talk for more info

Code available:

gitlab.com/mipl/graph-learning-network/

How to reach me?