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ABSTRACT

We introduce Consistent Assignment for Representation Learning (CARL). An
unsupervised learning method to learn visual representations by combining con-
trastive learning with deep clustering. By viewing contrastive learning from a
clustering perspective, CARL learns unsupervised representations by learning a
set of general prototypes that serve as energy anchors to enforce different views
of a given image to be assigned to the same prototype. Unlike contemporary work
on contrastive learning with deep clustering, CARL proposes to learn the set of
general prototypes in an online fashion, using gradient descent without the neces-
sity of performing offline clustering or using side algorithms to solve the cluster
assignment problem. CARL achieves comparable results with current state-of-
the-art methods in the CIFAR-10, -100, and STL10 datasets.

1 INTRODUCTION

Unsupervised visual representation learning focuses on creating meaningful representations from
data and inductive biases. Lately, methods based on Siamese neural networks (Bromley et al.,
1994) and contrastive loss functions (He et al., 2020; Chen et al., 2020a) have significantly re-
duced the accuracy gap between supervised and unsupervised based representations. Indeed, for
some downstream tasks, unsupervised-based representations already surpass their supervised coun-
terparts (Caron et al., 2020). In computer vision, approaches to representation learning can be
categorized into three groups: (1) contrastive learning methods using instance discrimination,
(2) clustering-based methods, and (3) a mixture of the two.

Recent state-of-the-art unsupervised representation learning rely on contrastive learning (Tian et al.,
2020; He et al., 2020; Chen et al., 2020c;a; Chen & He, 2020; Oord et al., 2018; Chen et al., 2020b).
These methods optimize an instance discrimination pretext task where each image and its transfor-
mations are treated as individual classes. They compare feature vectors of individual images with
the goal of organizing the feature space such that similar concepts are placed closer while moving
different ones farther.

On the other hand, traditional clustering methods aim to learn the data manifold by comparing
groups of features that share semantic structure based on a distance metric. When combined with
deep learning, clustering methods are often designed as two-step algorithms: first, a sizeable portion
of the dataset is clustered, and then the meta clustering information, e.g., prototypes and pseudo-
labels, are used as supervised signals in a posterior optimization task (Caron et al., 2018; 2019;
Asano et al., 2019; Yan et al., 2020)

Recent work has also attempted to combine the benefits of contrastive learning and clustering (Li
et al., 2020; Caron et al., 2020). In particular, Expectation-Maximization approaches alternate be-
tween finding the clusters and maximizing the mutual information between the embeddings and the
cluster centroids (Li et al., 2020). Inspired by them, our work merges the benefits of both approaches
by bridging the gap between clustering and contrastive learning. On the one hand, we use unsuper-
vised clustering dynamics to generate robust prototypes that organize the feature space. On the other,
we use contrastive learning to compare the distributions of the views’ assignments w.r.t. the clusters.
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Our experiments show that by mixing both approaches, we can learn useful visual representations
in an unsupervised way that performs on par with existing methods in downstream tasks.

From a clustering perspective, we can think of contrastive learning as learning clustered representa-
tions at the image-level. However, given the nature of the task, these clusters fail to capture semantic
information from the heterogeneous unknown classes because the learned clusters only comprise
representations from synthetic views of an image. Moreover, since contrastive learning methods
handle different images as negatives in the training process, even if two given observations share
the same class information, their representations will be pushed farther apart from each other. In the
end, each image will have its own cluster structure.

We propose an alternative method to learn high-level features by clustering views based on con-
sistent assignments. Unlike concurrent work that uses K-Nearest Neighbors (Altman, 1992) or K-
Means (Lloyd, 1982) as priors to enforce (learn) a cluster mapping, our method learns the prototypes
online. Instead of directly maximizing similarities between image embeddings, we force the distri-
bution of positive views’ assignments to be consistent among a set of finite learnable prototypes.
If the number of prototypes equals the number of observations in the dataset, we would be forcing
each cluster only to contain synthetic views of a given observation. This is equivalent to contrastive
learning with instance discrimination. However, if we set the number of prototypes to be smaller
than the number of observations in the dataset, by the pigeonhole principle, the learned prototypes
will not only cluster different views of an image together, but it will also contain representations of
different images that are similar enough to be assigned to the same cluster.

Regarding our contributions, (i) we propose a learning framework that leverages current contrastive
learning methods with clustering-based algorithms to improve the learned representations. Unlike
contemporary work, our method proposes to learn the clusters’ assignments in an online fashion
using gradient descent with no need for pre-clustering steps e.g., K-Means or offline procedures
to solve the clustering assignment problem, such as the Sinkhorn-Knopp algorithm (Cuturi, 2013).
(ii) We contrast high-level structures (the distributions of the views over the cluster assignments)
instead of low-level ones (such as the representations). And, (iii) Our learned prototypes do not need
to hold the semantics of the data but rather become energy anchors that self-organize the space to
learn better representations. Moreover, our proposed loss function does not require a more extensive
set of negative representations, which avoids the common problem of treating representations for
the same class as negatives.

1.1 RELATED WORK

This work builds on top of two main approaches to unsupervised visual representations learning:
deep clustering and un/self-supervised contrastive learning.

Self-supervised learning concerns the idea of devising pretext tasks that extract supervised signals
from the data (Doersch et al., 2015; Noroozi & Favaro, 2016; Gidaris et al., 2018; Zhang et al.,
2016). Most of these methods work with the same principle. They corrupt the input with stochastic
random transformations and challenge the network to predict some property of the corrupted input.

One such pretext task is instance discrimination (Dosovitskiy et al., 2015; Wu et al., 2018). It de-
scribes a classification task in which each image is treated as a unique class and, therefore, stochastic
transformations of the same image, often called views, should belong to the same class. Dosovit-
skiy et al. (2015) proposed to optimize this task by learning a linear classifier where the number of
output classes matches the number of observations in the dataset. Following, Wu et al. (2018) pro-
posed to use a Noise-Contrastive Estimation (NCE) approximation of the non-parametric softmax
classifier that could scale to large datasets gracefully. Currently, contrastive learning (Hadsell et al.,
2006) methods rely on an NCE based loss function called InfoNCE (Oord et al., 2018; Tian et al.,
2019). Recent work describes optimizing the InfoNCE loss through the lens of maximizing the
mutual information between representations of the same image (Hjelm et al., 2018; Henaff, 2020;
Bachman et al., 2019). In practice, the success of InfoNCE requires a high number of negative
embeddings. Nonetheless, since negatives are usually randomly sampled from the dataset, it often
leads to a false-negative problem where representations from images of the same class are treated as
negatives (Saunshi et al., 2019).
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He et al. (2020) presented MoCo, a contrastive learning framework that employs an additional mo-
mentum encoder to provide consistent instance representations for the InfoNCE loss. Chen et al.
(2020a) presented SimCLR, a Siamese-based (Bromley et al., 1994) contrastive learning method
trained with InfoNCE that relies on large bath sizes to draw a high number of negative samples.
BYOL (Grill et al., 2020) proposes a framework that does not require negative samples and learns
visual representations by approximating augmented views of the same data point using an `2 loss
in the latent space. Unlike contrastive learning, we seek to learn prototype vectors that act as an-
chors on our embedding space. We use these anchors as energy beacons for the images. Our goal
is to use the energy distributions induced by the similarity of the images w.r.t. the prototypes to find
representations that share similarities in the embedding space.

Recent work proposed clustering-based methods for deep unsupervised representation learn-
ing (Asano et al., 2019; Yan et al., 2020; Caron et al., 2019; Li et al., 2020; Caron et al., 2020).
DeepCluster (Caron et al., 2018) learns representations by predicting cluster assignments. One
of the limitations of this approach is that the classification layer needs to be reinitialized once
per clusterization. DeeperCluster (Caron et al., 2019) builds on top of (Caron et al., 2018) and
presents an algorithm to combine hierarchical clustering with unsupervised feature learning using
the rotation prediction pretext task (Gidaris et al., 2018). Similarly, Prototypical Contrastive Learn-
ing (PCL) Li et al. (2020), formulates a self-supervised visual representation learning framework as
an Expectation-Maximization (EM) algorithm.

Our method utilizes a conceptually distinct methodology. Unlike (Caron et al., 2018; Li et al., 2020),
our method does not require a pre-clusterization step of the entire corpus, which vastly reduces
memory and computing power requirements. Moreover, since we do not use K-Means clustering
as a proxy to learn an additional task, we do not need to reinitialize any layers during optimization,
nor is our method susceptible to limitations and assumptions implied by the K-Means algorithm.
Instead, we propose to learn the prototypes end-to-end by consistently enforcing different views
of the same image to be assigned to the same prototypes. Lastly, our method does not rely on
handcrafted pretext tasks.

Similar to our work, Caron et al. (2020) proposes an online clustering method to learn visual repre-
sentations by contrasting cluster assignments on a second set of latent variables. To avoid collapsing
modes where all observations are assigned to a few classes, they use the Sinkhorn-Knopp algo-
rithm (Cuturi, 2013) to solve the cluster assignment problem over the latent variables to guide the
encoder during learning. Unlike (Caron et al., 2020), our method learns cluster assignments end-
to-end via gradient descent and avoids trivial solutions by enforcing a regularization term over the
cluster assignments of views in a given batch. Moreover, we use a simpler representation space that
does not need a second set of latent variables to stabilize the clusters.

Van Gansbeke et al. (2020) presented a two-step algorithm for unsupervised classification and pro-
posed the SCAN-Loss (Semantic Clustering by Adopting Nearest neighbors) as part of the learning
pipeline. Their algorithm extracts a set of nearest neighbors from each observation and uses them as
priors to learn a second network for semantic clustering. Our implementation builds on top of the
SCAN-Loss, but unlike Van Gansbeke et al. (2020), we employ a Siamese network architecture to
learn representations via cluster assignments, end-to-end, without the necessity of optimizing for a
second self-supervised task or mining of nearest neighbors.

2 PROPOSED METHOD

Our proposal, Consistent Assignment for Representation Learning (CARL), re-frames contrastive
learning through a clustering perspective to learn robust representations (Section 2.1). CARL builds
distributions of the similarities between the prototypes and the image’s views (Section 2.2). To avoid
collapsing the representation in a subset of clusters, we impose an uninformative prior to CARL
prototypes (Section 2.3). CARL then optimizes both the similarity to the learned prototypes and the
uninformative prior (with a decay schedule for learning). Fig. 1 illustrates the learning pipeline.

2.1 CONTRASTIVE LEARNING FROM A CLUSTERING PERSPECTIVE

Let X = {x1, x2, . . . , xN} be a dataset containing N unlabeled images. And, let a view vi = T (xi)
of an observation xi as the application of a stochastic function T that is designed to change the
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Figure 1: An observation xi gets transformed into two stochastic views, v(·)i , that are further encoded
into a representation space, z(·)i . We obtain a distribution, p(·)i , of the representations’ assignments
to a set of clusters. Our objective L is to compare these distributions and minimize their difference.
We use one view as an anchor (superscripted by a) that is trained, while another positive view
(superscripted by +) that is not.

content of xi subjected to preserving the task-relevant information encoded in it. In practice, we can
create as many views as needed by applying the stochastic function T . Contrastive learning methods
propose to learn visual embeddings by solving an instance discrimination pretext task that is usually
optimized using the InfoNCE loss (Oord et al., 2018) defined as

LInfoNCE = − log
exp

(
sim

(
zai , z

+
i

)
/τ
)∑M

j exp (sim (zai , zj) /τ)
, (1)

where zai and z+i are anchor and positive representations taken from an encoder function f such that
z
(·)
i = f

(
v
(·)
i

)
, τ is the temperature parameter, and sim(·) is a similarity function, e.g., the cosine

similarity. If we view contrastive learning from a clustering perspective, the InfoNCE loss (1) is
minimized when all possible variants

{
vji
}
j

of an image xi are clustered into the same prototype
while representations from within a cluster are far apart from the M negative representations in the
denominator of (1).

We propose an approach where, instead of comparing against other instances (He et al., 2020) or pro-
totypes of the classes (Li et al., 2020), we learn a set of K general prototypes C = {c1, c2, . . . , cK},
K � N , against which we compare the views to determine their similarity and to promote consis-
tency and confidence when assigning views to clusters. I.e., views must agree with high confidence
in their cluster assignments.

2.2 CONSISTENT ASSIGNMENT FOR REPRESENTATION LEARNING

As with previous methods, we treat augmented versions of a given image as views and use them
as positive examples for optimization. Our objective is to transform two positive samples into a
distribution of their likelihood to belong to a set of K clusters. To do so, we encode each view
through an encoder function zi = f(vi) ∈ Rd. The encoder f comprises a backbone convolutional
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neural network, such as a ResNet (He et al., 2016), followed by a non-linear multilayer perceptron
(MLP) head.

Our objective is not to cluster the data in an unsupervised manner but rather to learn a set of proto-
types that will serve as anchors to differentiate views. Our hypothesis is that similar views should
have similar assignments w.r.t. the prototypes. Hence, to convert the representations into these as-
signments, we first compare the representation zi against all the prototypes to obtain an energy
distribution

qi[j] = 〈zi, cj〉, (2)
where qi[j] is the j-th element of the energy distribution qi for the i-th view. We learn the set of
prototypes through an assigner function represented as a linear layer. Thus, to get a distribution of
a given view over all prototypes, we normalize the energy using the softmax function and obtain
the posterior probability distribution, i.e., the probability of assigning the view vi to the general
prototypes k. Hence, our normalized probability for the k-th class given our view vi is

pi[k] = P (i assigned to k | vi) =
exp(qi[k])∑K
j=1 exp(qi[j])

, (3)

where qi[j] denotes the j-th element of the i-th un-normalized vector output of the assigner for the
respective view.

As we mentioned before, our main objective is to contrast the distributions of two views’ likelihood
w.r.t. the clusters. To do so, the encoder and assigner operate in a Siamese setup where a pair
of views from a given sample is independently transformed in its corresponding distribution, see
Fig. 1. To ensure the similarity between the views, we optimize the views’ distributions pai and p+i
over the clusters in C, so that the two distributions are consistent with one another. In other words,
by learning a consistent assignment of views over the clusters, a given prototype will be invariant
to augmented versions of an input sample. Moreover, because the number of prototypes is smaller
than the number of observations in the dataset, the clusters will also contain different observations
that share similarities in the embedding space.

We compute the similarity between the views’ distributions as their dot product

Lc = −
1

B

B∑
i

log〈pai , p+i 〉, (4)

where B is the size of a minibatch over which we are aggregating the samples. In the ideal case of
two one-hot vectors signaling the same perfect assignment, the dot product above yields its maxi-
mum value of one, and the negative log is minimized.

2.3 PREVENTING TRIVIAL SOLUTIONS

Only forcing different views vai and v+i to have the same cluster assignment using our consistency
loss (4) leads the networks to find a trivial solution where all representations zi are assigned to the
same cluster—cf. Fig. 2. To prevent such triviality, we force the distribution over the classes, P , to
be uninformative by minimizing the Kullback-Leibler divergence w.r.t. a uniform distribution, U .
Our regularization is

LKL = KL(P ‖ U) = log2(n) +
∑
c∈C

p̂ci log (p̂
c
i ) , (5)

where p̂ci is the expected distribution over a minibatch of size B,

p̂ci =
1

B

B∑
i

pci . (6)

In other words, we maximize the Shannon entropy of the average distribution of the predictions.
We can interpret the KL-divergence (5) as regularizing the encoder f to encourage the approximate
posterior (3) to be closer to the uniform distribution.

Minimizing the KL-divergence (5) will force the predictions within a batch to be spread across all
clusters. Since we do not know the underlying class distribution in advance, the KL-divergence (5)
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Table 1: Top-1 accuracy averaged over 3 runs on the linear evaluation protocol (He et al., 2020).

CIFAR-10 CIFAR-100 STL-10

Epochs 50 100 150 200 50 100 150 200 50 100 150 200

BYOL 59.03 ± 1.02 68.9 ± 02.4 73.25 ± 1.26 76.46 ± 0.37 29.33 ± 0.82 37.26 ± 0.47 42.31 ± 0.48 45.68 ± 0.16 70.48 ± 0.51 76.39 ± 0.31 79.53 ± 0.01 80.74 ± 0.72
SimCLR 67.68 ± 0.32 72.29 ± 0.86 74.69 ± 0.44 76.33 ± 0.29 37.99 ± 0.51 43.09 ± 0.95 45.74 ± 0.32 47.29 ± 0.58 74.26 ± 0.44 77.36 ± 0.39 78.79 ± 0.86 80.57 ± 0.66
MoCo v2 59.0 ± 12.8 65.57 ± 0.65 69.42 ± 0.48 71.62 ± 1.04 33.07 ± 1.34 39.12 ± 0.43 42.22 ± 0.71 44.35 ± 0.41 66.78 ± 0.30 71.5 ± 09.6 74.19 ± 0.86 75.46 ± 1.28
CARL 66.81 ± 0.30 72.32 ± 0.71 75.27 ± 0.11 77.41 ± 0.85 33.25 ± 0.73 39.65 ± 0.51 42.84 ± 0.84 46.23 ± 0.64 74.34 ± 0.45 76.87 ± 0.23 78.83 ± 0.22 80.62 ± 0.27

acts as a non-informative prior where we assume that the observations X are uniformly assigned
among all K prototypes.

By combining the consistency assignment loss (4) with the KL-divergence regularization (5) we
obtain our final learning objective

L = Lc + λeLKL, (7)
where λe is an epoch-dependent function that returns a scalar that prevents mode collapse at the
beginning of training. We observed that training is very susceptible to such collapsing to a single
assignment if not regularized. However, in practice, we noticed that keeping a large fixed value of
λe during training also prevents the encoder from learning more complex representations. Thus, we
recommend a function λe that decreases as training progresses. In theory, any decay schedule, such
as an exponential or cosine, could be used. We propose a linear decay schedule

λe =

{
b− b−a

E e if e ≤ E,
a otherwise,

(8)

where b and a denote the start and ending values of the decay, E represents the number of epochs in
which the decay will happen, and e is the epoch counter.

3 UNSUPERVISED FEATURE EVALUATION

We evaluate CARL representations extracted from a ResNet-18 backbone encoder and compare the
performance with different state-of-the-art methods using the linear evaluation protocol proposed
by He et al. (2020). All the models were trained for 200 epochs with the same cosine learning
rate decay (Loshchilov & Hutter, 2016) schedule and equal batch sizes. For more information,
refer to Appendix A. Table 1 compares our results with previous approaches on CIFAR-10, CIFAR-
100 (Krizhevsky et al., 2009), and STL-10 (Coates et al., 2011). We use MoCo v2 as our primary
baseline. Note that MoCo v2 alone is a solid baseline since it has been shown to outperform SimCLR
on ImageNet linear evaluation. Our method was able to outperform our primary baseline (MoCo)
on most of the datasets and performs on par (if not superior) with other implementations, including
BYOL and SimCLR. Moreover, unlike SimCLR and MoCo v2, our method does not use negative
samples, nor does it require a momentum-based target encoder to prevent collapsing (Grill et al.,
2020). The results on Table 1 also show a different side from the state-of-the-art methods since,
usually, they are only trained on large-scale datasets like the ImageNet (Deng et al., 2009), which
raises questions regarding how they perform of smaller datasets. Additionally, we show an ablation
study in the Appendix B.

4 CONCLUSION

In this work, we presented Consistent Assignment for Representation Learning (CARL). An unsu-
pervised method that learns visual representations by forcing augmented versions of an observation
to be consistently assigned over a finite set of learnable prototypes. Unlike contrastive learning
methods, we propose a higher-level pretext task that operates over the distributions of views instead
of directly optimizing the view’s embeddings. Our method also differs from recent work that merges
clustering with contrastive learning since it does not require pre-clusterization steps or algorithms
to solve the cluster assignment problem. Instead, we learn a set of general prototypes that act as
energy anchors for the views’ representations, entirely online using gradient descent. We studied
some of the main components of CARL and the effects of different configurations of hyperparam-
eters. Lastly, our results show that representations learned by CARL rival or even surpass current
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state-of-the-art in contrastive learning without resorting to a large number of negative samples or
extra encoders.
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A IMPLEMENTATION DETAILS

For all experiments, the encoder function f comprises a ResNet-18 backbone followed by a non-
linear 2-hidden layer fully-connected network as projection head as defined by (Grill et al., 2020)
and an assigner function designed as a linear layer. For all methods, the function f encodes an
image xi into a 128-dim representation and we closely follow the hyperparameters proposed by (He
et al., 2020). Namely, learning rate (0.03) and decay schedule (cosine with no restart), as well as the
choice of the optimizer (SGD with momentum) and the batch sizes (256), are consistent among all
methods. The set of data augmentations used to create the views follow (Chen et al., 2020a).

Regarding our implementations of MoCo v2, BYOL, and SimCLR, except for MoCo, in which we
used the official code repository, the other two methods are our implementations (closely following
the official releases in terms of code design and additional hyperparameters). Lastly, for feature
evaluation, we strictly follow the linear evaluation protocol proposed by (He et al., 2020).

B ABLATIONS

In this section, we evaluate the effects of the main hyperparameters of our method. When not
specified otherwise, all experiments follow a similar protocol. We learn representations using a
ResNet-18 backbone trained for 150 epochs, and the KL weight penalty λe is linearly decayed over
the first E = 100 epochs. To evaluate the multiple experimental setups, we train linear classifiers on
top of the encoder’s frozen features following the linear evaluation protocol proposed by He et al.
(2020) and report average Top-1 accuracy over three independent runs.

B.1 DOES DECREASING THE KL WEIGHT PENALTY IMPROVES REPRESENTATION
LEARNING?

The hyperparameter λe controls the contribution of the KL regularization (5) to the consistency
loss (4). Especially at the beginning of training, a higher contribution for the KL term avoids mode
collapsing, where the network optimizes the consistency loss (4) by assigning all observations to
the same prototype. Van Gansbeke et al. (2020) make similar claims for the entropy regularization
in their SCAN-loss (Van Gansbeke et al., 2020), and suggest a high (constant) value for the scalar
hyperparameter λe to avoid such trivialities.

We hypothesize that keeping a high value of λe over the course of training also prevents the network
from learning complex features. To verify this hypothesis, we trained CARL on the STL-10 (Coates
et al., 2011) unsupervised dataset for 200 epochs. We measure the performance by training a linear
classifier on top of the frozen features of the ResNet-18 backbone. We linearly decay the magnitude
of the λe hyperparameter, following (8), from b = 2.0 to a = 1.0 over the first E = 100 epochs
instead of keeping it constant for one of the experiments. As shown in Fig. 2, we observe that the
quality of the representations learned by CARL benefits from decreasing the contribution of the KL
regularization. Also, a smaller value of λe may guide the encoder to a non-optimal solution at the
beginning of training.

B.2 DOES THE NUMBER OF GENERAL PROTOTYPES INFLUENCE THE QUALITY OF THE
REPRESENTATIONS?

To evaluate the effect of learning a different number of prototypes, we trained CARL with ResNet-
18 backbones on the CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009) for 150 epochs.
For all experiments, the KL penalty function λe starts as b = 4 and is linearly decreased to a = 1.5
over the first E = 100 epochs. Fig. 3 suggests that over clustering benefits the quality of the learned
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Figure 2: Effect of the uninformative prior’s scheduling λe on the overall performance in STL-10.
Notice that a linear decay scheduling outperforms its constant counterpart and that a lower value
of λe produces non-optimal solutions due to mode collapsing.
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Figure 3: Effect of learning a different number of prototypes on the quality of the representations.
Empirical tests suggest an inverse U-shape curve where the optimal number of prototypes lies near
one order of magnitude w.r.t. the actual number of classes of the dataset.

representations. Moreover, the optimal number of general prototypes (mapped by the assigner)
depends on the number of actual classes of the dataset, where the best results are obtained when
the number of general prototypes is nearly one order of magnitude larger than the number of actual
classes of the data.
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