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Abstract

We present Contextualized Local Visual Embeddings
(CLoVE), a self-supervised convolutional-based method
that learns representations suited for dense prediction tasks.
CLoVE deviates from current methods and optimizes a sin-
gle loss function that operates at the level of contextualized
local embeddings learned from output feature maps of con-
volution neural network (CNN) encoders. To learn contex-
tualized embeddings, CLoVE proposes a normalized mult-
head self-attention layer that combines local features from
different parts of an image based on similarity. We exten-
sively benchmark CLoVE’s pre-trained representations on
multiple datasets. CLoVE reaches state-of-the-art perfor-
mance for CNN-based architectures in 4 dense prediction
downstream tasks, including object detection, instance seg-
mentation, keypoint detection, and dense pose estimation.
Code: https://github.com/sthalles/CLoVE.

1. Introduction

Self-supervised learning (SSL) has become essential for
learning downstream tasks. For tasks in which data annota-
tion is pricey or even impossible to acquire, a round of self-
supervised pre-training prior to learning the downstream
task of interest can significantly enhance the system’s final
performance and reduce costs with data annotation.

In computer vision, one main advantage of SSL [10, 17,
18, 23] over generative models [16, 24, 29], is the avoid-
ance of reconstructing the input signal. Typically, gener-
ative models optimize a cost function in the pixel space,
seeking to reconstruct the original input with high fidelity.
Besides the high computing costs of operating in the pixel
space, these methods assume that every pixel in the image
matters equally. However, from the representation learning
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Figure 1. SSL strategies to learn representations. Embedding sim-
ilarity optimization over global representations (top), local repre-
sentations (middle), and contextualized embeddings (bottom).

perspective, this property may not be necessary.
Instead, the SSL approach of working at the embedding

level allows SSL methods to learn representations that dis-
card useless information. This strategy can be precious for
learning downstream tasks since much of the details of an
image may be useless for solving many downstream tasks.
For instance, if the task of interest only requires a global
signal, such as the class information, given a fixed-size fea-
ture vector, the encoder may be encouraged to discard low-
level details, such as position, background, and orientation,
in favor of features associated with the class information.

Classic convolutional neural networks (CNNs) were pri-
marily designed to address classification tasks. CNNs dec-
imate the spatial dimensions of the input in favor of learn-
ing dense feature maps that are collapsed to a single global
representation vector before going to a classifier layer. This
engineering tendency encourages the convolutional encoder

https://github.com/sthalles/CLoVE


to discard fine-grained information from the input. In fact,
that is why many segmentation models [9, 22] attempt to re-
construct the input image, which can be viewed as learning
the low-level details lost in the encoding process.

We argue that current SSL methods, based on CNN
backbones, inherit the same architecture designs and suffer
from similar problems. Collapsing the output feature maps
of a CNN encoder into a global-level vector using an ag-
gregation function, such as the average, encourages the en-
coder to discard low-level details crucial for solving dense
prediction tasks, such as detection and segmentation.

Based on these assumptions, we conjecture that CNN-
based SSL methods carry an engineering bias toward down-
stream tasks that do not require low-level information from
the input. Such biases are also enforced by evaluation proto-
cols that primarily assess the learned representation’s clas-
sification power. For these reasons, state-of-the-art SSL
methods perform much better in classification tasks than
downstream tasks requiring dense predictions.

To close this gap, we propose an algorithmic approach
that focuses on learning contextualized visual embeddings.
Contextualized embeddings combine local features of an
image based on self-similarities. Instead of aggregating lo-
cal feature maps into a global vector using an arithmetic
average that attributes equal weights to each local feature,
we bootstrap multiple prediction vectors (one for each lo-
cal feature) based on learned weighted averages that cap-
ture contextualized information from similar regions of the
input image, as illustrated in Figure 1. This way, we can
bootstrap prediction vectors that aggregate multiple areas
of an image view that share semantic meaning to predict lo-
cal parts of a different view of the same image. Our method,
Contextualized Local Visual Embeddings (CLoVE), is de-
signed to learn representations that preserve local informa-
tion from the input by finding correlations among similar
regions of a view to predict local parts of a different view.
The motivation is to learn representations that excel at solv-
ing downstream dense prediction tasks.

Traditional SSL methods primarily optimize global rep-
resentations of different views on an image [3, 17, 18].
When training CNN backbones, the output feature map
is collapsed using an average function and treated as a
global image representation. Conversely, current SSL meth-
ods designed for dense prediction representation learn-
ing [25, 32, 38] either optimize for local features or com-
bine local and global objectives. In contrast, CLoVE does
not optimize directly for local or global representations. In-
stead, it poses the representation learning problem at the
level of contextualized local embeddings. We propose an
objective function that predicts a target representation from
a local part of a view using a combination of correlated lo-
cal embeddings from another view. Figure 2 illustrates our
architecture.

Our contributions are twofold. Firstly, we introduce a
novel method that does not optimize for local or global
embeddings. Secondly, we propose a variation of the self-
attention algorithm and integrate it into CNN architectures.
Our method learns representations that effectively retain lo-
cal information from the input and capture long-range de-
pendencies from representations that share semantic mean-
ing. This integration empowers our approach to excel in
dense prediction downstream tasks, where fine-grained de-
tails play a vital role in achieving high performance and
accuracy. Our method is extensively evaluated and proves
its effectiveness in downstream tasks, including object and
keypoint detection, segmentation, and pose estimation.

2. Related work
Recent SSL methods follow a similar framework com-

posed of the following building blocks: (1) a joint-
embedding architecture, (2) a pretext task, and (3) a
similarity-based loss function. The joint-embedding ar-
chitecture may be pure siamese [5] or follow a teacher-
student [11] architecture with a separate momentum en-
coder that usually does not receive gradients. Among
many proposed pretext tasks, one that stands out is in-
stance discrimination [1, 37]. For instance discrimination,
we task a deep neural network to find a pair of repre-
sentations from different views of the same image among
a set of negative pairs where the representation from the
anchor image is paired with representations from random
images. Lastly, the similarity loss function may be con-
trastive [10, 18, 28], in which InfoNCE [23] is a popular
choice, or non-contrastive [12, 17].

SSL methods differ in how they optimize the embedding
space. While a group of methods directly optimize the rep-
resentations using a similarity loss function [10, 18, 43],
others discretize the embedding space by learning proto-
types [2, 6, 7, 27]. Despite differences, these methods are
designed to learn global representations from the input im-
age. When the feature extractor is represented as a CNN,
the feature map from the last convolutional layer is col-
lapsed into a single vector through a global average pool-
ing operation. If a Transformer [14] backbone is used, the
class-token representation is optimized as a global feature
vector [8, 13]. These methods generally learn powerful,
invariant representations for classification problems but do
not perform as well when the downstream task requires lo-
calization and low-level details.

Recently, we have witnessed the emergence of methods
designed for dense prediction tasks [4, 25, 32, 40]. Gener-
ally, these methods take one of two approaches to learn rep-
resentations (1) they pose the learning problem at the level
of local embeddings [25], or (2) they optimize for global
and local embeddings jointly [4, 32, 38, 40]. Most methods
fall into the second category, where two loss functions are



minimized, one that operates on representations from the
full view and another on representations from local parts of
the image. The two loss functions are linearly combined to
a final objective and jointly optimized. Some evidence sug-
gests a trade-off between global and local feature learning
for SSL [4, 32], which might explain the popular algorith-
mic design. We can view this approach as an extension of
current SSL methods, allowing them to trade off global and
local characteristics in their learning features.

Among methods that pose the learning problem at the
local feature level, the approach proposed by Pinheiro
et al. [25] stands out. The method learns dense (pixel-level)
representations by exploring contrastive learning over local
features that map to the same pixel across different views
of the same image. The architecture learns local features
by reconstructing the feature maps using a decoder model
and applies contrastive learning at a higher level of feature
reconstruction.

Among methods that combine global and local objec-
tives, recent work [32, 33, 38] used the InfoNCE loss to
learn global and local representations and can be viewed as
extensions of MoCo [18]. Wang et al. [32] proposed a loss
function that performs contrastive learning at the level of lo-
cal features. To match local features across different views,
they use a cosine similarity function where a local feature
from one view takes the most similar local feature from the
other view as its target. Similarly, Xiao et al. [38] proposed
a region-level contrastive loss that relies on intersected re-
gions between the two views of an image. Over interme-
diate layers of a convolutional encoder, the overlapping ar-
eas (feature maps) are processed by a fixed-sized window
and fed to a Precise RoI Pooling [21] layer, creating a fea-
ture vector from the region. In both cases, the local loss is
implemented using the InfoNCE loss and jointly optimized
with the global MoCo-style objective.

Xie et al. [40] proposed a non-contrastive local objective
that can be viewed as an extension to the BYOL [17] loss.
They proposed the Pixel-to-Propagation module. A form of
attention layer that creates contextualized local embeddings
by combining local features in a vicinity. Lastly, Bardes
et al. [4] extended the VicReg [3] method and applied the
Variance-Invariance-Covariance Regularization (VICReg)
loss to learn global and local features.
Contrast to previous approaches. Our method differs
from contemporary work in essential aspects. One of the
main differences between CLoVE and existing approaches
is the departure of jointly optimizing global and local objec-
tives, thus avoiding the global/local feature learning trade-
off. Instead, we learn multi-head self-attention layers that
can bootstrap contextualized local embeddings that serve as
predictions to target local features.

CLoVE may be regarded as similar to PixPro [40]. How-
ever, there are essential differences between the two ap-

proaches. CLoVE combines multi-head self-attention lay-
ers, usually employed in transformers, to convolutional ar-
chitectures in a contextualized local feature learning frame-
work. On the other hand, the Pixel-to-Propagation mod-
ule [40] differs from CLoVE in important aspects. Namely,
(1) it does not learn multiple heads, (2) it does not learn
transformation matrices for query, key, and value tensors,
and (3) it does not normalize the result attention scores.
Moreover, Xie et al. [40] combined a loss function at the
local embedding with the standard BYOL global objective
in a non-contrastive manner. Conversely, CLoVE does not
work directly with global or local objectives and employs a
ranking margin loss.

Unlike previous work [25], our architecture works di-
rectly at the feature map level and does not attempt to re-
construct local features. In contrast to Wang et al. [32],
our strategy avoids the noisy process of choosing the most
similar local embedding as the target. Instead, we match
representations from which their center pixels lie within a
vicinity in the pixel space.

3. Learning contextualized local representa-
tions

We strive to learn visual features that retain fine-grained
details from the input and therefore are suited for dense pre-
diction tasks. Unlike other methods, CLoVE does not opti-
mize a global or a local loss function (or their combination).
Instead, the learning problem is posed at the contextualized
embeddings level, learned from feature maps of CNN en-
coders. In this framework, we use local features as target
representations, and to predict such targets, we learn vectors
that combine local features in a vicinity based on learned
self-similarities. In essence, contextualized embeddings are
a mixture of local, semantically similar features from dif-
ferent parts of a view. Local features are combined into a
single prediction based on their similarity to the anchor lo-
cal feature. Intuitively, this strategy allows learning richer
prediction vectors that encode many similar parts of an im-
age view to predict a localized portion of another view.

3.1. Preliminares

Given an image x ∈ R3×H×W with no supervision, we
create views x1 = T (x) and x2 = T (x), where T (·) is a
stochastic function that applies a set of random geometric
and intensity transformations to x. Such transformations
include random flips, color distortions, and cropping. In
practice, we can work with many views, but for simplicity,
we constrain the number of views to Nv = 2.

Each view is independently forwarded through a student
encoder fs and a teacher encoder ft. The encoders are com-
posed of a feature extractor, e.g., a CNN encoder, and a pro-
jection head represented as a multi-layer perceptron (MLP).
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Figure 2. Views x1 and x2 are fed to student and teacher encoders fs and ft, to extract local feature maps F s and F t, respectively. The
predictor qs takes the local features F s and outputs contextualized embeddings Cs by combining local features based on self-similarities.
We define a grid of points proportional to the output feature map in each view. Points in one view are paired with points in the other based
on distance in the ambient space. Selected points are mapped to the feature space and used to match embeddings in Cs with targets in F s.

Following previous work [17, 18], the teacher encoder ft
does not receive gradient updates. Instead, the weights θt
are updated using a moving average of the weights θs, such
as θt = αθt + (1− α)θs, where α is the weight.

For each view, we obtain a tensor of projected local
feature maps F = f(xv), for v ∈ [0, 1]. These local
features correspond to the output feature map of an inter-
mediate layer of the CNN feature extractor, projected to
a lower dimensional space, and have a general shape of
F ∈ RN×D×Fh×Fw , where N is the batch size, D is the
feature dimensionality, and Fh and Fw are the spatial di-
mensions of the feature map.

We can view the projected local features in F as a se-
quence of embeddings, F ∈ RN×D×L, where L is the se-
quence length L = Fh×Fw. Traditional SSL methods take
the feature maps from the CNN feature extractor (prior to
projection) and collapse them using a global average oper-
ation to obtain a global representation. The global feature
is fed to a projection head and then to a similarity-based
loss function, as illustrated in Figure 1 (top). On the other
hand, local SSL methods either maximize agreement be-
tween local embeddings or combine local and global ob-
jectives [4, 32, 40]. In a different direction, CLoVE learns
contextualized representations through self-attention layers
operating on local embeddings of a view.

Next, we detail how we extract dense self-supervision
from image views and our contextualized loss function.

3.2. Pixel-to-representation neighborhood match-
ing

To learn representations that retain low-level features, we
need targets that contain such properties. In other words,
we must bootstrap dense self-supervised signals to use as
targets in our loss function. One way is to track pixels’ lo-
cations as we create views x1 and x2. If two views share an
intersected area, the pixels in this region represent the same
part in the original image. However, scaling and resizing

may push these pixels to random locations during the view’s
creation. Instead of matching exact pixels across views, we
can look for pixels’ neighbors. This strategy explores the
pixel spatial locality inductive bias in which nearby pixels
represent similar contexts and, hence, should have similar
representations. Once we match pixels across views based
on neighborhood distances, we can map the pixels’ loca-
tions to the feature space to index local features in the loss
function.

We define I1 and I2 as lists of 2D points in the pixel
space. Points in I1 are defined over the first view, and points
in I2 over the second. For each point I1i in the first view,
we look for pixel correspondences in the second view by
extracting nearby points in I2 that lie within a similarity
region. Accordingly, we define M as the set of all pairs
(I1i , I

2
j ) such that the euclidian distance between points I1i

and I2j is smaller than a threshold Tpos, such as

M =
{(

I1i , I
2
j

)
| d

(
I1i , I

2
j

)
< Tpos

}
, (1)

where d(a, b) =
√∑2

i=0 (ai, bi)
2.

Next, we map the points in M from the pixel space to the
feature space. Each point in M is mapped to its respective
local embedding in the feature map of the CNN encoder.
Therefore, the pair of points in M now represent a pair of
indices matching features from view 1 to view 2. This pro-
cess is depicted in Figure 2.

The Pixel-to-Neighborhood matching strategy will pair
at most p = |F | points for each local embedding, where
F represents the projected feature map from the CNN en-
coder. For a ResNet-50 encoder, we define 49 points in a
grid structure that are mapped to each of the 7 × 7 local
features in F , as described in Section 6.

One advantage of this matching algorithm is that we do
not need to force views to share an intersected region. Lo-
cal representations from different views that do not intersect
can still be paired if they are close enough in the pixel space.



Moreover, the choice of Tpos matters since it controls the av-
erage number of target local representations. Intuitively, if
Tpos is too high, a pixel I1i might consider all pixels in I2

as neighbors. As a result, it invalidates the spatial local-
ity inductive bias present in natural images. On the other
hand, if Tpos is too low, it limits the target space as the spa-
tial locality bias is not explored to its fullest, as described
in Section 5.3.

3.3. Predicting local embeddings with contextual-
ized vectors

At this point, we could match local features across dif-
ferent views on an image using the feature indices in M .
However, this learning objective would fail to learn long-
range dependencies. Intuitively, if an object occupies a
large portion of an image, we want to maximize the agree-
ment between all semantically meaningful parts of the ob-
ject or region and its local target embedding. To accom-
plish this strategy, each local feature of the first view can
interact with its neighboring local features to learn similar-
ity patterns. This way, local features exhibiting substantial
similarity are combined into a single contextualized vector
and used to predict the local target embedding from another
view.

To learn contextualized embeddings, we propose a pre-
dictor head qs that receives the output feature map F s

from the student and apply a Normalized Multi-Head Self-
Attention (NMHSA) layer to obtain Cs = qs(F

s), where
qs(F

s) = NMHSA(F s). We use the matching feature in-
dices in M to select contextualized predictions and target
local features from Cs and F t, respectively. Then, we max-
imize agreement between contextualized and local embed-
dings by minimizing the margin ranking loss defined as,

L =
∑

(i,j)∈M

max
(
0,−λσ

(
Cs

i , F
t
j

)
+ σ

(
Cs

i , F
t
neg

)
+ µ

)
,

(2)
where µ is the margin, σ(a, b) = xy

∥x∥2∥y∥2
is the cosine

similarity function and ∥·∥2 is the ℓ2 norm.
For each pair of matching features indexed by (I1i , I

2
j ),

we maximize agreement between contextualized represen-
tations from one view and local embeddings from the other.

To bootstrap the negative representation Fneg, we follow
a similar strategy proposed by Wang et al. [31]. We com-
pute the cosine similarity between the contextualized pre-
dictions Cs and all local representations from the oppos-
ing view F t. Then, we select the top-k most offending
local representations (higher similarities scores) from F t,
discard the most similar one, and take the average of the
resulting vectors. Intuitively, we discard the most offend-
ing local feature from F t because it could represent a false
negative. This selection strategy can be viewed as finding a
negative region (within the image) that is not correlated with

the contextualized predictor. The size of the negative region
is controlled by k and set as k = 10. We show in Section 5.4
that choosing negatives within the image is most beneficial
to the learned representation as selecting negatives across
different images.

3.4. The normalized attention head

We can view the self-attention mechanism as combining
similar local areas of a view. Intuitively, to successfully pre-
dict the local region of the second view, the self-attention
must combine the local features of the first view in a way
that similar content has a strong contribution and dissimilar
content has a weak contribution to the contextualized em-
bedding.

In practice, we learn 8 self-attention heads, where
head[i] = Attention(F sW q, F sW k, F sW v) and
Attention(Q,K,V) = softmax

(
σ(Q,KT )

τ

)
V . We show in

Section 5.2 that, in practice, normalizing queries and keys
before computing the attention scores improves the final
downstream tasks’ performance.

From an intuitive perspective, by matching contextual-
ized representations with local embeddings (based on pixel
spatial locality), the network learns to (1) attend to similar
regions in the input and (2) disregard local embeddings rep-
resenting different contexts in the same view. This process
optimizes multiple prediction subtasks, i.e., for each local
feature F s

i , there is a contextualized representation Cs
i . As

a result, the learned representations retain fine-grain details
from the input.

4. Main experiments

To assess how well CLoVE’s pre-trained representa-
tions transfer to dense prediction tasks, we fine-tuned detec-
tion and segmentation models, using Detectron2 [36],
on Pascal VOC07, COCO, LVIS, and Cityscapes datasets.
For the competing methods, we used the officially released
model checkpoints and reported performance metrics from
their papers if the same evaluation protocol. Otherwise, we
ran experiments in-house. We pre-trained CLoVE on the
ImageNet-1M dataset for 200 and 400 epochs and com-
pare its performance against state-of-the-art SSL methods
on various downstream tasks such as object detection, in-
stance segmentation, keypoint detection, and dense pose
estimation. The experiments report average performance
across 5 independent runs. We highlight the top-1 perform-
ing methods in bold and top-2 underlined.

COCO detection and instance segmentation. Tables 1
and 4 compare CLoVE’s performance using the R50-C4
and R50-FPN backbones against other methods. For the
two backbones, CLoVE achieved top-1 performance across



Table 1. Obj. detection and segmentation on COCO (R50-C4).
Method ep APbb APbb

50 APbb
75 APmb APmb

50 APmb
75

Supervised 100 38.2 58.2 41.2 33.3 54.7 35.2
Rand init – 26.4 44.0 27.8 29.3 46.9 30.8

ReSim [38] 200 39.7 59.0 43.0 34.6 55.9 37.1
InsCon [41] 200 40.3 60.0 43.5 35.1 56.7 37.6
PixPro [40] 400 40.5 59.8 44.0 35.4 56.9 37.7
DetCo [39] 200 39.8 59.7 43.0 34.7 56.3 36.7
SlotCon [34] 200 39.9 59.8 43.0 34.9 56.5 37.3

CLoVE 200 40.6 60.0 44.1 35.4 56.8 37.8
400 41.0 60.3 44.2 35.5 57.2 38.1

Table 2. Obj. detection and segmentation on COCO (R50-FPN).
Method ep APbb APbb

50 APbb
75 APmb APmb

50 APmb
75

Supervised 100 38.9 59.6 42.7 35.4 56.5 38.1
Rand init – 32.8 51.0 35.3 28.5 46.8 30.4

DenseCL [32] 200 39.4 59.9 42.7 35.6 56.7 38.2
ReSim [38] 200 39.3 59.7 43.1 35.7 56.7 38.1
PixPro [40] 400 39.8 59.5 43.7 36.1 56.5 38.9
SetSim [33] 200 40.2 60.7 43.9 36.4 57.7 39.0
VICRegL [4] 300 37.3 57.6 40.7 34.1 54.7 36.5

CLoVE 200 40.8 60.5 45.0 36.8 57.6 39.8
400 41.2 61.1 45.0 37.1 58.1 40.1

Table 3. Instance segmentation on Cityscapes (R50-FPN).
Method ep AP AP50

Supervised 100 26.5 52.9
Rand init – 19.9 40.7

DenseCL [32] 200 33.1 61.7
PixPro [40] 400 35.8 63.7
VICRegL [4] 300 29.8 58.5
SlotCon [35] 200 35.2 63.8

CLoVE 200 35.7 64.1
400 37.2 65.3

both tasks. Additionally, CLoVE reached top-2 perfor-
mance in 5 out of the 6 for R50-C4 and 4 out of 6 for R50-
FPN in low-resource training settings.

Cityscapes instance segmentation. In Table 3, CLoVE
achieves an average improvement of +1.4 AP over Pix-
Pro [40], and +10.7 AP over the supervised baseline.

LVIS object detection and instance segmentation.
LVIS is a dataset for long-tail object recognition. It contains
more than 1200 classes and more than 2M high-quality in-
stance segmentation masks. In Table 4, CLoVE 200 epoch
model performs similarly to PixPro. The 400 epoch model
beats competitors by a small margin and improves upon the
supervised baseline by +4 points in all metrics.

COCO keypoint detection. In Table 5, CLoVE performs
comparably to other SSL methods and surpasses the super-

Table 4. Obj. detection and segmentation on LVIS (R50-FPN).
Method ep APbb APbb

50 APbb
75 APmb APmb

50 APmb
75

Supervised 100 20.2 33.4 21.4 19.6 31.2 20.8
Rand init – 12.4 21.8 12.5 12.1 20.2 12.5

DenseCL [32] 200 20.4 33.5 21.4 19.9 31.5 20.9
PixPro [40] 400 23.8 38.2 25.2 23.3 36.1 24.7
SlotCon [34] 200 23.2 37.6 24.3 22.9 35.6 24.3
VICRegL [4] 200 7.0 13.4 6.4 7.4 12.7 7.3

CLoVE 200 23.6 37.7 25.2 23.3 35.9 24.8
400 24.3 38.8 25.8 23.9 36.7 25.3

Table 5. Keypoint detection on COCO (R50-FPN).

Method ep APkp APkp
50 APkp

75

Supervised 100 65.3 87.0 71.3
Rand init – 63.0 85.1 68.4

DenseCL [32] 200 66.3 87.1 71.9
PixPro [40] 400 66.6 87.2 73.0
ReSim [30] 200 66.3 87.2 72.4
SetSim [33] 200 66.7 87.8 72.4
SlotCon [35] 200 66.5 87.5 72.5

CLoVE 200 66.9 87.5 73.2
400 67.0 87.4 73.3

Table 6. Object detection on Pascal VOC (R50-C4).
Method ep AP AP50 AP75

Supervised 100 53.5 81.3 58.8
Rand init – 33.8 60.2 33.1

DenseCL [32] 200 58.7 82.8 65.2
ReSim [30] 200 58.7 83.1 66.3
InsCon [41] 200 59.1 83.6 66.6
PixPro [40] 400 60.0 83.8 67.7
cp2 [30] 600 56.9 82.3 63.6
SlotCon [35] 200 57.3 82.9 64.3
SetSim [33] 200 59.1 83.2 66.1

CLoVE 200 60.1 83.7 67.7
400 59.9 83.8 67.8

vised baseline by +1.7 average AP. For keypoint detection,
we noticed that the CLoVE 400 epoch model did not im-
prove over the 200 epoch model. In Figure 3, we report
qualitative results for keypoint detection on randomly cho-
sen images.

Pascal VOC Object Detection. In Table 6, CLoVE 200
epoch model performs comparably with PixPro [40]. Sim-
ilarly to keypoint detection, the CLoVE 400 epoch model
did not improve upon the 200 epoch version.

COCO dense pose estimation. In Table 7, CLoVE av-
erage performance beats supervised models trained on
ResNet-50 and ResNet-100 backbones. Figure 3 shows
CLoVE’s qualitative results for the dense-pose estimation
downstream task.



Table 7. Dense pose estimation on COCO (R50-FPN).
Method ep APbb APmb APgps APgpsm

Supervised (R50) [36] 100 61.2 67.2 63.7 65.3
Supervised (R101) [36] 100 62.3 67.8 64.5 66.2

DenseCL [32] 200 63.0 67.7 65.7 66.7
PixPro [40] 400 63.1 68.3 66.2 67.4
SlotCon [35] 200 62.8 67.4 65.3 66.4

CLoVE 200 63.2 68.2 66.6 67.5
400 63.2 68.3 66.3 67.3

Table 8. Contrastive vs. non-contrastive loss functions and the ef-
fect of multi-crop augmentation.

Loss multi-crop AP AP50 AP75

ℓ2 ✗ 58.6 82.8 66.2
✓ 58.3 82.9 65.3

Rank ✗ 58.5 82.8 65.6
✓ 58.8 83.3 65.9

Notes on VICRegL. VICRegL performance was sur-
prisingly below expectations in many downstream tasks.
While Bardes et al. [4] reported AP of 59.5 for the same
protocol and model (resnet50 alpha0p75.pth) we
used, our experiments resulted in AP of 27.6 on VOC07.
Additionally, there is an open issue on VICRegL’s official
GitHub repo reporting the same reproducibility problem
with similar results.

5. Ablations
To ablate the main hyperparameters of our model, we

pre-trained CLoVE on the ImageNet-1M dataset for 50
epochs and reported average performance results (3 inde-
pendent runs) on Pascal VOC07 object detection.

5.1. Multi-crop and the choice of loss function

In Table 8, we explore two loss functions that could be
used in CLoVE’s learning framework: the non-contrastive
ℓ2-norm dot product and the ranking margin loss (2). More-
over, we evaluate the effect of multi-crop augmentation on
both loss functions. The ℓ2-normalized dot product loss,
proposed by Grill et al. [17] and used in PixPro [40], per-
forms well with two views. However, performance de-
creases when multi-crop is employed. On the other hand,
the ranking loss performs well in both setups as it can ex-
tract extra performance from multi-crop augmentation.

5.2. Normalized multi-head self-attention

We propose a variation of the MHSA layer employed
in Vision Transformers [15]. Specifically, we normalize
queries and keys before computing the attention scores. By
normalizing the vector’s magnitudes, we constrain the sim-
ilarity scores to −1.0 and 1.0, which, in practice, avoids
training instabilities and improves downstream task perfor-
mance, cf . Table 9.

Table 9. Normalized multi-head self-attention (NMHSA) performs
slightly better than regular MHSA.

Method AP AP50 AP75

MHSA 58.3 83.1 65.8
NMHSA 58.7 83.3 65.9

Table 10. Negative sampling strategies for contrastive learning.
Method queue AP AP50 AP75

Inter ✓ 57.4 82.5 63.6
Inter (avg) ✓ 57.5 82.8 64.7
Intra ✗ 58.7 83.3 65.9

Table 11. The effect of Tpos on the learned representations.
0.5 0.6 0.7 0.8 0.9

Tpos 57.0 58.3 58.5 58.1 57.7

5.3. Bootstrapping self-supervised signals

To match local representations across different views
of an image, we explore the spatial locality inductive bias
present in natural images and expand it to the feature space.
Intuitively, if two distinct pixels lie within a distance thresh-
old Tpos, we assume their representations encode similar
information. In Table 11, we explore the effect of the dis-
tance threshold used to identify pixels as neighbors across
different views. As shown, too small or too large values for
Tpos invalidates the inductive bias assumption and harms
the learned representations, cf . Figure 2.

5.4. Exploring negative sampling strategies

In Table 10, we explore three negative sampling strate-
gies for CLoVE’s loss function (2). For two strategies, we
utilize an extra queue containing 16 384 representations as
a source of negatives. In the first strategy (inter), at each
training iteration, we randomly take one local representa-
tion from the output feature map of the teacher branch and
store it in the queue. Older representations in the queue are
discarded in favor of new ones. This way, the queue holds
local representations from multiple images. In the second
strategy (inter avg), we aggregate the feature map into a sin-
gle vector using a global average operator. Lastly, we use
the local features without positive matchings from within
the view as negatives. Since this strategy does not require
negatives from other images (no queue), we call it intra-
negative. As shown in Table 10, the intra-negative strategy
outperforms the other ones in VOC07 and is CLoVE’s de-
fault strategy.

6. Implementation details
We use the ResNet-50 [20] architecture without the last

fully connected and global average pooling layers as the
feature extractor. Following, the projection head is a two-



Figure 3. Qualitative results for keypoint detection (top row) and dense pose estimation (bottom row).

layer MLP with 4096 hidden units, ReLU, batch normaliza-
tion, and an output dimension of 256. To create views, we
follow Grill et al.’s [17] protocol.

We forward an image view x ∈ R3×224×224 and ob-
tain a feature map F ∈ R256×7×7. The contextualized
prediction head qs implements the Normalized Multi-Head
Self-Attention layer. It receives the feature map as in-
put and trains 8 parallel attention heads. Each attention
head learns independent query, key, and value matrices,
W q,W k,W v ∈ R256×32. To compute the attention scores,
we normalize the projected queries and keys to unit vectors.
The output of each head is concatenated (in the feature di-
mension) and passed through a linear output layer whose
output has the same shape as the input.

CLoVE is trained using 4 NVIDIA A100 GPUs, a total
batch size of 2048 images, using the LARS [42] optimizer,
weight decay of 2 × 10−5 and learning rate of 1.0 with a
cosine decay schedule. In practice, the margin value in (2)
is set to µ = 100.

6.1. Evaluation protocols

COCO detection and instance segmentation. We fol-
lowed the protocol from He et al. [18] and fine-tuned all lay-
ers of a Mask-RCNN [19] on the train2017 set (∼118k
images) and evaluated on val2017, using the 1× schedule
(∼12 epochs).

Cityscapes instance segmentation. We followed
the mask rcnn R 50 FPN.yaml config file from
Detectron2 [36], without changes, and fine-tuned all
layers of a Mask-RCNN (R50-FPN backbone) for 24k
iterations, with a global batch size of 32 images (8 per
GPU), and a learning rate of 0.01.

LVIS object detection and instance segmentation. We
followed the mask rcnn R 50 FPN 1x.yaml config file
for LVISv1 instance segmentation from Detectron2,

with no BN, and fine-tuned a Mask R-CNN (R50-FPN) on
lvis v1 train for 180k iterations (1 × schedule) with
a batch size of 16 (4 images per GPU), a learning rate of
0.001 and evaluated on lvis v1 val.

COCO keypoint detection. We used the key-
point implementation of Mask R-CNN (R50-
FPN) from Detectron2, fined tuned on
keypoints coco 2017 train, and evaluated
on keypoints coco 2017 val for 90k iterations
(1 × schedule), a batch size of 16 (4 images per batch), a
learning rate of 0.02, and with enabled BN.

Pascal VOC Object Detection. We followed He
et al.’s [18] protocol and fine-tuned all layers of a Faster
R-CNN [26] (R50-C4) on trainval07+12 (∼16.5k im-
ages) for 24k iterations and evaluated on test2007.

COCO dense pose estimation. We followed the Dense-
Pose [36] project from Detectron2 and fine-tuned a
Faster R-CNN (R50-FPN) backbone using CLoVE’s pre-
trained representations (1 × schedule). Specifically, we
used the densepose rcnn R 50 FPN s1x.yaml con-
fig file from the Detectron2 repository, with BN en-
abled.

7. Conclusions

We presented Contextualized Local Visual Embeddings
(CLoVE), a self-supervised method designed to learn rep-
resentations to solve dense prediction tasks. CLoVE com-
bines the multi-head self-attention layer commonly used
in the Transformer model with convolutional backbones to
learn prediction vectors that combine multiple similar ar-
eas of a view into a contextualized vector used to predict a
local part of another view. We empirically validate our de-
sign choices through a detailed ablative study of CLoVE’s
main hyperparameters. Additionally, we extensively bench-
marked CLoVE in many downstream dense prediction tasks



such as object detection, instance segmentation, keypoint
detection, and dense pose estimation. CLoVE pre-trained
representations showed robust performance against state-
of-the-art SSL methods and supervised baselines.
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