LEARNING FROM MEMORY: NON-PARAMETRIC MEMORY AUGMENTED SELF-SUPERVISED LEARNING OF VISUAL FEATURES
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Improve training stability of clustering-based SSL methods.
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@ Exploring the role of memory for self-supervised learning. DINO VIT-B Linear 662 74.2 . 1 ) ’ ‘ ‘ ’
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* Memory plays a crucial role in learning. iBOT  VIT-B Linear 68.2 75.7 ours ViT-S 800 38.5 15.9 63.4 34.8
* When learning a new concept, we constantly compare what we see with previous experiences to gain insights and create Ours  VIT-B Linear 70.4 76.4 :
analogies. DINO VIT-B LogReg 67.1 74.2 MoCo-v3 Vil-B 300 30.5 8.6 54.3 23.5
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e An SSL method augmented with a non-parametric memory, M, component to store representations from previously seen Ours Vil-b 400 39.3 14.1 65.8 38.1
concepts. _ .
* The memory is used to perform multiple comparison-based tasks. v OPtlmlzatIOH Task
— Contrast the current image views against recollected representations from other images in memory. « Optimizing over random memory blocks regularizes training and naturally Lower-shot and long-talled Copy detection
avoids mode collapse—no need for extra regularizers. )
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= Learning by Remembering! == In math, you minimize this! 1 y 4 top-1 DINO VIT-S 800 85.7
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" Follow the standard SSL pipeline. p} = softmax (cos (21 ]\lib) /7s) 0Lo-v3 5772 0.5 47.8= 0.6 52.8= 0. 26. Ours  VIT-S 800 85.5
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1.- Create views from an image using random augmentations. | VFW.ZH 1BOT 4224+ 0.7 52.84+ 0.3 60.6+ 0.3 66.2 BOT VIT-B 400 84.2
2.- Define two encoder streams in a teacher-student setup, where each stream consumes a different view. , T I Ours 44.8+ 0.4 56.3+ 0.3 63.8+ 0.2 67.9 lOurs VIT-B 400 87. 6
3.- Pass the features to student and teacher encoders and receive individual vector representations. /’/’/’/’ :
4.- Sample a random memory block M; and compare the views currently seen with the ones in the memory block. f\‘?%% Do - -
5.- Take the resulting probability distribution relating the views to the concepts in the block and optimize for consistency. ‘ Ly (ps:pi) = —p;" log (ps’ )
6.- Update the memory with the current view’s representation. ‘ The Forty-First International Conference on Machine Learning
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