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METHODOLOGY
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WHY REPLACE CLASSIC PROTOTYPES IN SSL?
Pain-point in Prototypical SSL What Self-Organising Prototypes give instead

7 Single vector must encode all features of a region in
space (cluster).

=⇒ 3 Each prototype = anchor + multiple support embed-
dings

7 Needs over-clustering K≫C. =⇒ 3 No extra clusters: random anchors already cover the
space

7 Parametric centroids drift or die → center-
ing, sharpening, Sinkhorn,. . .

=⇒ 3 Purely non-parametric supports no drift, no collapse,
no add-on tricks

SOP = richer & adaptive prototypes, space-filling without the engineering overhead.

SOP: HOW A PROTOTYPE SELF-ASSEMBLES (every iteration)
1. Sample Anchors:

Randomly select K anchor embeddings {ai}K
i=1 from memory E.

2. Build Self-Organizing Prototypes (SOPs):
for each anchor ai do

Find k nearest neighbors Nk(ai) in E.
Define SOP: Si = {ai} ∪Nk(ai).

end for
3. Compute Support Contributions:
for each SOP Si do

for each support ej ∈ Si do
Compute similarity ⟨ej, ai⟩ as contribution score Yj,i.

end for
end for
4. Assign Views to SOPs:
For each view u, compute similarity P(u) to all SOPs.
5. Optimize:
Use cross-entropy loss between view assignments.

What this buys us
• SOPs are data-centred, rebuilt every step ⇒ no drift.
• 1 SOP ⇒ Multiple supports ⇒ richer regional de-

scription.
• New anchors every iteration ⇒ full coverage, no

over-clustering
• One mechanism, two scales (global & local)

P(u ) = softmax
(

u D⊤) Y

View’s embeddings
Self-Organizing Prototypes

Soft-contributions

L = −∑
x

P(z1
0)

⊤ log P(z2
0)

k-NN Downstream Performance
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Self-Attention Maps

Transfer learning (k-NN) / Video obj. segmen. (DAVIS 2017)

Method Arch Ep. k-NN Lin. 1% 10% 100%

EsViT Swin-T/14 300 77.0 78.7
iBOT Swin-T/14 300 76.2 79.3
SOP Swin-T/14 300 77.2 79.4

iBOT ViT-S/16 800 75.2 77.9 61.9 75.1 82.3
MaSSL ViT-S/16 800 75.1 77.8
SOP ViT-S/16 800 75.3 77.9 62.1 75.1 82.3

iBOT ViT-B/16 400 77.1 79.5 68.45 78.1 84.0
MaSSL ViT-B/16 400 77.2 79.6
SOP ViT-B/16 400 78.21 79.9 69.53 78.4 84.2

iBOT ViT-L/16 250 78.0 81.0 84.8
I-JEPA ViT-H/14 300 79.3
SOP ViT-L/16 250 79.2 81.2 84.9

Method Data Arch. (J &F )m Jm Fm

Sup.
IN-1K IN-1K ViT-S/8 66.0 63.9 68.1
STM I/D/Y RN50 81.8 79.2 84.3

Self-Sup.
CT VLOG RN50 48.7 46.4 50.0
MAST YT-VOS RN18 65.5 63.3 67.6
STC Kinetics RN18 67.6 64.8 70.2
DINO IN-1K ViT-S/16 61.8 60.2 63.4

IN-1K ViT-B/16 62.3 60.7 63.9
iBOT IN-1K ViT-S/16 61.8 60.4 63.2

IN-1K ViT-B/16 62.7 61.7 63.7
SOP IN-1K ViT-B/16 63.3 61.7 65.0

Image retrieval / Robustness to background changes

ROx RPar

Method Arch. Epo. M H M H

Sup. RN101 100 49.8 18.5 74.0 52.1

DINO ViT-B/16 400 37.4 13.7 63.5 35.6
iBOT ViT-B/16 400 36.8 14.3 64.1 36.6
MaSSL ViT-B/16 400 39.3 14.1 65.8 38.1
SOP ViT-B/16 400 42.7 17.5 67.3 41.3

Background Changes Clean

OF MS MR MN NF OBB OBT IN-9

iBOT 91.9 89.7 81.9 79.7 54.7 17.6 20.4 96.8
MaSSL 91.0 90.2 83.0 80.4 53.4 15.8 23.7 97.6
SOP 93.3 91.4 85.6 83.1 55.8 19.9 22.8 97.1


