

SELF-ORGANIZING VISUAL PROTOTYPES FOR NON-PARAMETRIC REPRESENTATION LEARNING Thalles Silva 🏵 🛛 Helio Pedrini 🏵 🔹 Adín Ramírez Rivera 🍀 Our University of Campinas University of Oslo

Pain-point in Prototypical SSL	What Se
X Single vector must encode <i>all</i> features of a region in \implies space (cluster). X Needs <i>over-clustering</i> K ≫ C. \implies	✓ Each protedings✓ No extra c
X Parametric centroids drift or die \rightarrow center- \implies ing, sharpening, Sinkhorn,	space ✓ Purely nor no add-on tr

SOP = richer & adaptive prototypes, space-filling without the engineering overhead.

SOP: HOW A PROTOTYPE SELF-ASSEMBLES (every iteration)

1. Sample Anchors:	
Randomly select K anchor embeddings $\{a_i\}_{i=1}^K$ from memory I	$\Xi \cdot \bullet SOPs a$
2. Build Self-Organizing Prototypes (SOPs):	• 1 SOP
for each anchor <i>a_i</i> do	scriptic
Find k nearest neighbors $\mathcal{N}_k(a_i)$ in E.	scriptic
Define SOP: $S_i = \{a_i\} \cup \mathcal{N}_k(a_i)$.	• New a
end for	over-cl
3. Compute Support Contributions:	• One me
for each SOP S_i do	
for each support $e_j \in S_i$ do	
Compute similarity $\langle e_i, a_i \rangle$ as contribution score $Y_{j,i}$.	
end for	
end for	
4. Assign Views to SOPs:	
For each view u , compute similarity $P(u)$ to all SOPs.	
5. Optimize:	
Use cross-entropy loss between view assignments.	

on-parametric supports no drift, no collapse, icks

What this buys us

are *data-centred*, rebuilt every step \Rightarrow no drift. \rightarrow Multiple supports \Rightarrow richer regional deon.

anchors every iteration \Rightarrow full coverage, no lustering

nechanism, two scales (global & local)

Forty-Second International Conference on Machine Learning (ICML) Acknowledgements: Sigma2 NN8104K, RCN 309439, & CAPES 001.

	Fransfer	lea	rnin	g (k-	-NN) / V	ideo	obj. seg	gmen.	(DAV]	[<mark>S 2017</mark>		
Method	Arch	Ep.	k-NN	Lin.	1%	10%	100%	Method	Data	Arch.	$(\mathcal{J}\&\mathcal{F})_m$	\mathcal{J}_m	\mathcal{F}_m
EsViT	Swin-T/14	300	77.0	78.7				Sun.					
iBOT	Swin-T/14	300	76.2	79.3				IN-1K	IN-1K	ViT-S/8	66.0	63.9	68.1
SOP	Swin-T/14	300	77.2	79.4				STM	I/D/Y	RN50	81.8	79.2	84.3
iBOT	ViT-S/16	800	75.2	77.9	61.9	75.1	82.3	Self-Sun					
MaSSL	ViT-S/16	800	75.1	77.8				CT	VLOG	RN50	48.7	46.4	50.0
SOP	ViT-S/16	800	75.3	77.9	62.1	75.1	82.3	MAST	YT-VOS	5 RN18	65.5	63.3	67.6
iBOT	ViT-B/16	400	77.1	79.5	68.45	78.1	84.0	STC	Kinetics	RN18	67.6	64.8	70.2
MaSSL	ViT-B/16	400	77.2	79.6				DINO	IN-1K	ViT-S/16	61.8	60.2	63.4
SOP	ViT-B/16	400	78.21	79.9	69.53	78.4	84.2		IN-1K	ViT-B/16	62.3	60.7	63.9
iBOT	ViT-L/16	250	78.0	81.0			84.8	iBOT	IN-1K	ViT-S/16	61.8	60.4	63.2
I-JEPA	, ViT-H/14	300		79.3					IN-1K	ViT-B/16	62.7	61.7	63.7
SOP	ViT-L/16	250	79.2	81.2			84.9	SOP	IN-1K	ViT-B/16	63.3	61.7	65.0

Given Service Image retrieval / Robustness to background changes

			\mathcal{R}	$\mathcal{O}\mathbf{x}$	\mathcal{R}	Par
Method	Arch.	Epo.	Μ	Η	Μ	Η
Sup.	RN101	100	49.8	18.5	74.0	52.1
DINO	ViT-B/16	400	37.4	13.7	63.5	35.6
iBOT	ViT-B/16	400	36.8	14.3	64.1	36.6
MaSSL	ViT-B/16	400	39.3	14.1	65.8	38.1
SOP	ViT-B/16	400	42.7	17.5	67.3	41.3

