
Published as a Tiny Paper at ICLR 2023

Understanding the Effectiveness of Cross-
Domain Contrastive Unsupervised Domain
Adaptation

Viacheslav Sinii1, Ad́ın Ramı́rez Rivera2, Adil Khan1,3
1Innopolis University, 2University of Oslo, 3University of Hull

Abstract

Unsupervised domain adaptation helps to transfer learned tasks from a
source to a target domain in the lack of labeled data. Recently, contrastive
learning has shown promising results in this setup. However, there are
limitations on the performance due to unbalanced objectives between the
self-representation and the adaptation tasks. We show that pre-training
choices and hard negative mining provide on average 20% improvement of
accuracy and successfully pair contrastive learning and unsupervised domain
adaptation.

1 Introduction
Unsupervised domain adaptation (UDA) aims to improve the performance of a machine
learning model on a target domain whose characteristics are different from those on the
source domain in which it is trained. This is done without using any labeled data from the
target domain by learning a transferable feature representation that captures the shared
information between the two domains, which is especially helpful in low data regimes. Existing
approaches give theoretical bounds on target error (Ben-David et al., 2006; 2010); suggest
aligning probability distributions using carefully designed metrics (Gretton et al., 2006; Long
et al., 2015; 2017; Zellinger et al., 2017); and, recently, contrastive learning was used
for domain adaptation (Chen et al., 2020; He et al., 2020; Kang et al., 2019; Khosla
et al., 2020; Toldo et al., 2021; Wang et al., 2022) (Appendix F). However, improper use
of these techniques can lead to suboptimal results. Our work examines the limitations of
the contrastive approach for UDA introduced by Wang et al. (2022). We show that their
method underperforms the naive model that has no domain adaptation. We found that this
degradation is due to the unbalanced effect of contrastive and classification objectives on
model training where domain adaptation shadows the main task of classification. Through
extensive experiments, we found that pre-training choices and explicit hard negative sampling
can improve model performance.

2 Background
The formal definition of UDA setting can be found in Appendix A.1.
Wang et al. (2022) employ Cross-Domain Contrastive Loss (CDCL) for learning domain-
invariant class-aware features. We describe their methodology in detail in Appendix A. This
approach has caught our attention since it raised several important questions:

• How will additional objective, i.e. domain adaptation expressed in contrastive loss,
affect the main task (classification)?

• The pseudo-labeling will inevitably produce incorrect labels, especially at the begin-
ning of training. How will this affect model performance?

Thus, the focus of our study is understanding the impact of contrastive loss on model training.

Source code: https://github.com/ummagumm-a/cross_domain_contrastive_uda.
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Table 1: Target accuracy (%) on Office-31 (ResNet-50) and VisDA2017 (ResNet-101) for
unsupervised domain adaptation.

Method Office-31 VisDA Avg.

A→ W A→ D W→ A W→ D D→ A D→ W

No adaptation 69.9 ± 8.2 79.0 ± 9.7 63.0 ± 9.1 95.1 ± 2.8 62.1 ± 3.5 88.9 ± 6.9 51.5 ± 3.4 72.8
CDCL 57.0 ± 18.2 58.5 ± 3.3 54.4 ± 14.7 55.3 ± 25.9 54.1 ± 9.0 68.3 ± 16.6 60.3 ± 10.6 58.3
Random Sampling 57.3 ± 5.3 60.7 ± 11.3 53.1 ± 3.1 59.6 ± 4.0 48.3 ± 9.0 73.1 ± 19.5 62.5 ± 25.2 59.2
Pretraining 79.1 ± 6.0 75.9 ± 8.8 64.2 ± 1.0 90.6 ± 3.2 67.5 ± 2.2 93.4 ± 0.5 61.4 ± 5.5 76.0
Explicit Negative Sampling 78.7 ± 4.9 84.9 ± 8.6 68.6 ± 5.9 94.9 ± 3.9 69.2 ± 4.7 92.1 ± 3.3 70.7 ± 21.2 79.9
Implicit Negative Sampling 74.8 ± 11.6 78.7 ± 5.9 68.9 ± 3.6 82.4 ± 13.7 70.7 ± 5.4 89.2 ± 8.9 71.2 ± 2.0 76.6
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Figure 1: The accuracy of the baseline model with no domain adaptation. The gap between
source and target accuracies signifies a misalignment between the two domains.

3 Findings
Compared to the Baseline model with no domain adaptation (Appendix B), CDCL resulted
in two well-aligned domains (Figure 1); the gap between the source and the target accuracies
is negligible. However, accuracy for both domains dropped significantly, and the convergence
rate slowed down. Overall, CDCL achieved a reduced domain gap by sacrificing accuracy
(Table 1).
We believe that this result is due to the overwhelming impact of the contrastive loss, which
can be seen by examining gradient norms w.r.t. to each of the two losses. Apart from that,
the confidence of the predictions of the baseline model stays at low values of approx. 3%
(Appendix C).
Since classification is overshadowed during training, we let the model to pre-train on the
source domain before activating the contrastive loss (Appendix B). Results in Table 1 and
Figure 1 show that this technique improved the performance by 18% on average.
Additionally, we discovered that explicit hard negative sampling helps to balance the two
losses, thus shifting focus on classification while still being able to align two domains. Table 1
indicates an average of 20% improvement over CDCL. To validate the positive impact of
explicit hard negative sampling, we quantitatively show that neither random sampling nor
implicit negative sampling lead to the same improvement (Table 1; Appendix D.
Finally, we found that CDCL is resistant to noise and is not affected by incorrectly labeled
target samples (Appendix E). The details of our experimental setup can be found in
Appendix B.

4 Conclusion
Our experiments demonstrated that contrastive loss overshadows the classification loss and
therefore techniques for their balancing are required. Pretraining of the model ensures the
reasonable performance of the classifier before the start of domain adaptation. However,
explicit hard-negative sampling may be a preferable method since it improves the classification
accuracy and domain alignment in an easier manner, outperforming other approaches.
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A CDCL
This section describes Cross-Domain Contrastive Loss (CDCL) proposed by Wang
et al. (2022).

A.1 Setup

In UDA, the aim is to adopt a model trained on a labeled source domain to perform well
on other unlabeled domains. Formally, the source dataset is defined as a set of Ns tuples
(Xs, Ys) = {(xi

s, yi
s) : i ∈ [1; Ns]} and target dataset is defined as a set of Nt samples

Xt = {xi
t : i ∈ [1; Nt]}. The samples in Xs and Xt are drawn from the source and target

distributions Ds and Dt. Also, xs and xt belong to the same fixed set of M categories,
i.e., yi

s ∈ {0, . . . , (M − 1)}. Then, the task is to construct a model ft : Xt → Yt trained on
Xs ∪ Xt which consists of feature encoder g : Xt → Rd and classification head h : Rd → Yt,
where d is the dimensionality of feature space. zi

s and zj
t are defined to be L2-normalized

feature encodings of xi
s and xj

t .
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A.2 Pseudo-labeling

The alignment of feature distributions on the class level is crucial for the high performance
of a model. However, class information for the target domain is unavailable and requires
approximation. That can be achieved with a technique called pseudo-labeling which uses
K-means clustering to infer class information. This approach is based on the assumption
that feature encodings of objects from the same class are likely to locate close to each other
irrespective of their domain. Cluster centers are initialized to class centroids from the source
domain, and the algorithm runs until convergence. Then, samples assigned to a cluster are
pseudo-labeled as belonging to the class that was used to initialize this cluster. To reduce
the labeling noise, all samples located far from cluster centers are removed; specifically, the
samples are removed when the cosine similarity between their features and cluster centers is
less than a threshold d.

A.3 Contrastive loss

Contrastive loss is generally utilized to produce feature space in which ‘similar’ samples
(positive pairs) are located closer to each other, and ‘dissimilar’ samples (negative pairs)
are far from each other. In the context of UDA, the contrastive loss is used to ensure that
samples from the same class are mapped to the same location in the feature space irrespective
of their domain. Therefore, a positive pair is defined as samples that belong to the same
class and are from different domains. Similarly, a negative pair consists of samples from
different classes and different domains. In each training step, one batch is sampled from
each domain, and each target sample in a batch acts as an anchor. Then, the formulation of
Cross-Domain Contrastive Loss is:

Lt,i
CDC = − 1

|Ps(ŷi
t)|

∑
p∈Ps(ŷi

t)

log exp(zi
tz

p
s /τ)∑

j∈Is
exp(ziT

t zj
s/τ)

(A.1)

where i is the index of the anchor sample, Is is the set of source samples in a mini-batch,
Ps(ŷi

t) = {k | yk
s = ŷi

t} indicates the set of positive samples from the source domain that
share the same label with the target anchor xi

t, and τ is a temperature parameter.

Similarly, source samples are used as anchors to compute Ls,i
CDC. Combining Lt,i

CDC and Ls,i
CDC

gives the final definition of the Cross-Domain Contrastive Loss:

LCDC =
Ns∑
i

Ls,i
CDC +

Nt∑
j

Lt,j
CDC. (A.2)

A.4 Classification

Separately from two batches sampled for contrastive loss, another batch is sampled from the
source dataset to train the classifier. The outputs of classification head h are used to evaluate
classification performance, and Cross-Entropy loss is used as the optimization objective:

LCE = −
M∑
i

yilog(pi) (A.3)

where yi is 1 when a sample x is labeled as class i and 0 otherwise; pi is a probability of a
sample x belonging to class i that comes from model predictions.

A.5 Final Optimization Objective

Classification and contrastive losses are combined with a weighting parameter λ to define
the final optimization objective:

min
θ

LCE(θ; Ds) + λLCDC(θ; Ds, Dt). (A.4)
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B Experimental Setup
In our experiments, for fair comparison we took the same model architecture and datasets
as Wang et al. (2022).

B.1 Datasets

Office-31 contains 31 classes of objects typically encountered in an office environment. It
is split into three domains—‘amazon’ with images taken with a good camera on a white
background; ‘dslr’ with images taken in an office with a high-resolution camera on various
backgrounds; and ‘webcam’ with images also collected in an office environment but with a
low-resolution camera exhibiting some noise.
VisDA2017 is a large-scale dataset having 12 classes. In our experiments, we evaluated
model performance on the synthesis-to-real adaptation task.
We performed analysis on the ‘amazon-webcam’ pair. Other datasets were used for final
evaluation; the results are presented in Table 1.

B.2 Implementation Details

CDCL. We used a separate backbone for each dataset - ResNet50 for Office-31 and ResNet101
for VisDA, both are pretrained on ImageNet (Deng et al., 2009). In addition, we used Domain-
Specific BatchNorm (Chang et al., 2019), an L2-normalization component for outputs, and a
single fully-connected layer with a bias component disabled as the classification head.
We used SGD with a momentum of 0.9 for model optimization with the learning rate set
to 1e−3 for the backbone and 1e−2 for the classification head. Learning rate scheduler:
η = η0(1 + 10p)−b, where p linearly increases from 0 to 1 and b was set to 0.75 (for Office-31)
and to 2.25 (for VisDA). All images were resized to (224, 224) shape, and pixel values are
normalized to mean 0 and variance 1. The number of epochs is 500.
For contrastive loss: temperature parameter τ = 1.0 and weighting parameter λ = 1.4.
For a reliable estimate of model performance, we averaged the results over four dataset splits
produced by StratifiedKFold.
Changes described below were made with respect to the settings of CDCL.
No Adaptation (Baseline). This model was trained on the source domain with the target
domain used only for evaluation. This was achieved by setting weighting parameter λ = 0.
Pretraining. The model was trained for 100 epochs on the source dataset; then the
contrastive loss was activated.
Explicit Negative Sampling. Expression A.1 was substituted for expression D.1 with
threshold parameter sα = 0.5.
Implicit Negative Sampling. Temperature parameter τ = 0.05. For Office-31 weighting
parameter λ = 0.1.
Random Sampling. In each training step, we chose random negative pairs in the same
amount as the Explicit Negative Sampling thresholding would give.
Obtaining gradients w.r.t. to each loss. We calculated the gradients w.r.t. to each
component in the expression A.4 separately - LCE(θ; Ds) and λLCDC(θ; Ds, Dt). Then, we
treated gradients for all the weights as a single vector and calculated its L2-norm.
Contrastive-only model The feature encoder was updated only with gradients w.r.t. to
the LCDC. Since classification head h does not participate in calculation of contrastive loss,
its weights were not updated by LCDC. Therefore, classification loss LCE was calculated, but
its impact was limited only to the classification head.
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Figure C.1: Ratio between gradient norms w.r.t. contrastive and classification loss. The
rapid decrease of the ratio for Explicit Negative Sampling training strategy highlights its
ability to balance the two losses.
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Figure C.2: Performance of the Contrastive-only model. This figure resembles the Figure 1,
which means that for default settings the classification loss has no effect on weight update.

C Analysis of CDCL
The fact that the model succeeds in aligning two domains well but sacrifices the accuracy can
signify that the two losses are combined disproportionally. Indeed, Figure C.1 shows that for
CDCL the gradients w.r.t. to contrastive loss dominate the gradients w.r.t. classification loss,
so the model gets too concentrated on domain alignment, and classification loss effectively
has no impact on weight update. Figure C.2 shows the model performance with classification
loss impacting only task-specific classification head, i.e., gradients w.r.t. classification loss do
not affect the weights of feature encoder. The curves produced by CDCL (Figure 1) and
the contrastive-only model are almost identical, which signifies that contrastive loss indeed
greatly overweights the classification loss. The details of these experiments are described in
Appendix B.
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Figure C.3: The mean probability of predicted class in each epoch for CDCL. Though overall
the model becomes more confident in its predictions throughout training, the confidence
stays at low values.

Also, we found that the model is not confident in its predictions. Figure C.3 shows that
though the mean probability of predicted class grows over time, it remains at low values of
approx. 3%.

D Explicit Hard Negative Sampling
Explicit Hard Negative Sampling is intended to make the model focus only on the hardest
examples, thus increasing the efficiency of training. Explicit Hard Negative Sampling is
defined as:

Lt,i
CDC = − 1

|Ps(ŷi
t)|

∑
p∈Ps(ŷi

t)

log exp(zi
tz

p
s /τ)∑

j∈Is,ziT
t zj

s>sα
exp(ziT

t zj
s/τ)

, (D.1)

where sα is the threshold parameter for filtering hard negatives.
Since contrastive loss greatly overshadows classification, we decided to decrease its impact on
the gradients of the parameters by limiting the set of samples on which it operates. Figure C.1
shows that with this approach the impact of contrastive loss steadily decreases as the set of
hard negatives becomes smaller. Importantly, the best performance was achieved when the
model was fed with the hardest examples. Our experiments showed that random sampling
either has no effect or leads to worse performance (Table 1). Alternatively, Negative Sampling
can be performed in an implicit way by lowering the value of temperature parameter τ .
Wang & Liu (2021) describe this behavior of contrastive loss and show the superiority of
Explicit Negative Sampling. Our experiments also indicate that on average Implicit Negative
Sampling gives worse results (Table 1), which is in line with the work of Wang & Liu (2021).

E Removing Incorrectly Labeled Samples
Our experiments showed that on average approx. 15% of training target samples were
mislabeled for the ‘A → W ’ dataset pair. Despite this, the methodology suggested by Wang
et al. (2022) is resistant to incorrect pseudo-labels present in the training dataset. To support
this conclusion, we conducted the following experiment: we used the original CDCL setup as
described in Appendix B, but after each pseudo-labeling procedure we filtered out samples
for which yreal ̸= ypseudo. In this way, the model received only correctly labeled samples
throughout training. Figure E.1 shows the performance of this model—the curves almost
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Figure E.1: The performance of CDCL trained with removal of incorrectly pseudo-labeled
target samples. This figure resembles Figure 1, which indicates that CDCL is resistant to
pseudo-labeling noise.

exactly repeat the ones on Figure 1 (b) showing that the presence of noise in training data
does not affect the quality of the model.

F Related Work
Previous studies (Ben-David et al., 2006; 2010) have provided theoretical bounds on target
error in terms of source error, domain divergence, and shared expected loss. Therefore, many
UDA works focus on minimizing domain divergence; they can be broadly categorized into
two paradigms.
The first paradigm is based on adversarial approach. For instance, Ben-David et al. (2006)
propose using a binary classifier to distinguish between two domains as a way of measuring
domain divergence. This idea leads to the adversarial model proposed by Ganin & Lempit-
sky (2015), which extracts domain-invariant features by reversing gradients from the domain
discriminator to the feature extractor. Another example is the use of Generative Adversarial
Networks (GANs) to transform source images to look like they are drawn from the target
distribution (Bousmalis et al., 2017).
The second paradigm is based on aligning probability distributions of features between
the source and target domains. This approach is motivated by the study of Yosinski
et al. (2014) who showed that transferability decreases in higher layers of a neural network,
and introduced the idea of minimizing discrepancy. Several studies have proposed metrics
for aligning probability distributions, e.g. Maximum Moment Discrepancy (MMD) (Gretton
et al., 2006; Long et al., 2015; 2017), Central Moment Discrepancy (CMD) (Zellinger
et al., 2017), and aligning covariance matrices of features from the top level of the feature
extractor (Sun & Saenko, 2016; Sun et al., 2016).
Some studies have attempted to address misalignment on the class level. For example, Saito
et al. (2018) trained two classifiers on labeled source data and minimized disagreement
between their predictions for target data. Kang et al. (2019) suggest a Contrastive Domain
Discrepancy (CDD) metric for distributions conditioned on class information. Saenko
et al. (2010) attempted to find a transform into a latent space where the source and target
domains look similar while preserving class information. However, these approaches require
labeled examples for each class in the target data.
In UDA, labels for target data are not available but can be approximated by pseudo-labeling
(Kang et al., 2019; Liang et al., 2020; Toldo et al., 2021). For example, Kang et al. (2019)
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used K-means algorithm to cluster target data; initial cluster centers were set to centroids of
classes calculated on the source data.
Our work is inspired by Wang et al. (2022), who applied contrastive learning to minimize
cross-domain distances between samples of the same category.
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