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Our Problem Maximization Similarity Strategies
VQA... _does not work for non-ideal data! Local Similarity. Contrast local repr. to enhance object’s visual cues
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Motivation: Research Questions ~ ()
Graph \
= Do scene graph VQA models work with non-ideal generated scene graphs? No. / \ Ao — [ . 22 E are min D Lin 2
= Does un-normalized contrastive learning enhance visual information in the O—@—0) Q ()—0) g(p 7 O gQJ (p 0 ’])
VQA task? Yes. (Sometimes) (i) (7) ’

SelfGraphVQA Architecture

Global Similarity. Contrast global repr. to enhance global visual cues
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Three distinct maximization strategies:

1. Local Similarity. A localized node representation (i.e., object-wise): Regularization for Permutation Equivariance (SelfSim). Align similar nodes and regularize

O (21, A1)
Ly(p1, 22) =5 Zal‘%;?m D(p1,i>22,5), (1) \
where O Is the number of object in the scene. Symmetrically, we compute Q (o) —( ) ] S1
LE(p% Zl)’ Q
1
Ly(z1, 22) = §(LZ(]01, 29) + Lj(p2, 21)). (2) S
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2. Global Similarity. A global pooled graph representation (i.e., scene-wise): .
1
Lg(z1, 22) = §(D(p1, %) + D(pa, 21)). (3) \ |
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3. Regularization for Permutation Equivariance. Align similar nodes and encourage Q @ Q J(Zh 22) C'J(Sl’ 82)
regularization. The anchors’ similarity s ; = arg minzu D(z1 4, 21,5) and similarities Q
of augmented views sy ;; = D(22, 22 ;). We compute cross entropy (CE) between
anchors and augmentations Augmented
(Zy, Ay)  Similarity
J(z21, 22) = CE(s1, s2), (4)
which acts as a regularizer to constrain permutation equivariance for the \
augmentations in addition to the local loss, yielding Q @ Q _
Ls(z1,29) = Ly(z1, 22) + J(21, 22), (5) @
Ablations
Results
Change in accuracy under potentially disruptive augmentations and perturbations.
. . . . Results (%) on GQA by standard metrics Accuracy on different question types
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Global Gaussian Noise + Crop  —5.6 -/./7 =55 =81 Global 67.7 308 62.5 94.9 90.6 6.7 523 0.70 1
SelfSim 68.4 31.3 65.9 949 90.7 2.1 54.0 § 0.65 |
GIong+BERT+IiQk 68.0 33.0 63.9 95.0 91.2 8.9 54,5 ; .
Results (%) Of the Aug Baseline and SeIfSIm SelfSim+BERT+link  68.2 32.8 64.3 95.0 91.0 8.0 545 5 0.60 | _
. - . o 0.55 ) _
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Baseline Aug 65.1 28.7 94.6 90.1  50.1 .
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Sensitivity of accuracy (%) for bias question analyzes of SelfGraphVQA and Self- Relahonsh|p Attribute Object  Global  Category Average
GraphVQABERT.
Examples
Setup Methods (1) Correct (2) Correct (3) SG explainable (4) SG explainable (5) Objectively Correct
Scene Graph + Question Baseline Local Global SelfSim
Noise + SG 16.2 16.6 28.6 26.6
Question + Noise 39.9 38.3 3/7.4 39.8
Noise + Noise 12.7 14.6 18.9 21.0
Question + Scene Graph BERT Baseline BERTGlobal+link BERTSelfSim+link
Noise + SG 21.0 23.2 24.5
Question + Noise 47 .4 41.8 47 .8
Noise + Noise 19.8 21.7 21.3
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for Research-based Innovation. Q: What is the aircraft Q: Are there any parachutes Q: What is the white pot holding? Q: Which kind of furniture Q: What is in the red glass??
on the ground? or bags? Is right of the curtains?
Answer: Airplane Answer: No Answer: Flower Answer: Chair Answer: Beverage
Prediction: Airplane Prediction: No Prediction: Flowers Prediction: Chair Prediction: Liquid
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