SelfGraphVQA: A Self-Supervised Graph Neural Network for Scene-based Question Answering

Bruno Souza

Marius Aasan Prof. Dr. Hélio Pedrini Prof. Dr. Adín Ramírez Rivera

October 3rd, 2023

1. Introduction

Visual Question Answering

Motivation

- 2. Methodology
 - SelfGraphVQA

Similarity Loss

Results
 GQA Results
 Ablation
 Conclusion

Contributions

Future Works

- Introduction
 Visual Question Answering
 Motivation
 Methodology
 SelfGraphVQA
 Similarity Loss
- 3. Results
 GQA Results
 Ablation
 4. Conclusion
 Contribution
 Future Works

Introduction

Visual Question Answering (VQA)¹

A testbed for the evaluation of reasoning and generalization <u>capabilities.</u>

¹Anton et al. "VQA: Visual Question Answering." CVPR, 2015.

Introduction

Complex Reasoning task

Holistic comprehension of the scene.

Q: What is on the wall?

Ground-truth : Star Prediction: A painting (MCAN [Yu et al, 2019])

Spectrum of Acceptable Answers

Broad spectrum of acceptable answers.

Q: What is happening? Ground-truth: watching videos, showing phone Prediction: phone (ViLBERT [Agrawal et al. 2023])

VQA requires beyond the framework of classical statistical learning

Great efforts towards Scene Graph for VQA.

Input: Question What is the red object left of the girl that is holding a hamburger?

Illustration of the SG representation in the GQA Dataset²

Evaluation on GQA Dataset by data type and SGG usage.

Method	Eval. Data	Acc (%)
Human	-	89.30
GraphVQA	Annotated/SGG	94.78
LRTA	Annotated/SGG	93.10
Lightweight	Annotated/SGG	77.87
CRF	Annotated	72.10
LXMERT	Extracted	59.80
GraphVQA	Test Extracted/SGG	29.7

²Hudson and Manning. "GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering." CVPR, 2019.

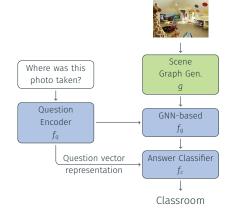
HOWEVER, using annotated scene graphs is:

- Labor-intensive and expensive.
- Allows high spectrum of semantically correspondent scene graphs
- Potentially linguistic bias to the question.

Baseline architecture⁴

More practical approach that uses a Scene graph generator model³

Leverage the self-supervised learning to enhance the visual information.

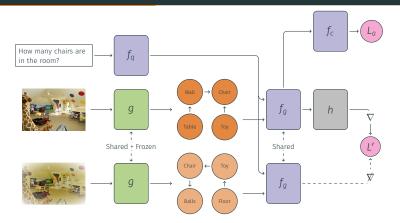


³Knyazev et al. "Graph Density-Aware Losses for Novel Compositions in Scene Graph Generation." BMVC, 2020.
⁴Liu et al. "GraphVQA: Language-Guided Graph Neural Networks for Scene Graph Question Answering.", 2021.

- Introduction
 Visual Question Answerin
 Motivation

 Methodology
 SelfGraphVQA
 - Similarity Loss

3. Results
GQA Results
Ablation
4. Conclusion
Contribution
Future Works

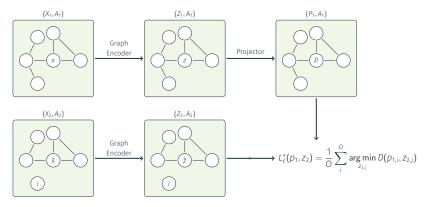


We handle three distinct maximization strategies:

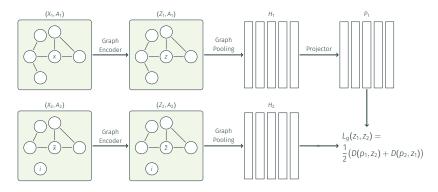
- Local Similarity: Node Wise
- Global Similarity: Global Wise
- SelfSim: Regularization for Permutation Equivariance

Local similarity strategies

Object-wise: Similarity over object pairs from the two views.

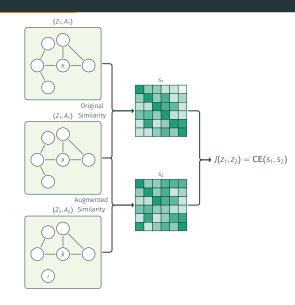


Global-wise: Similarity maximization for the scene representation.



SelfSim

Aligning Comparable Nodes and Promoting Regularization: address permutation invariance in graph representations.



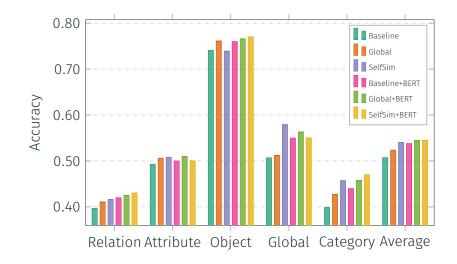
- 1. Introduction
 - Visual Question Answering
 - Motivation
- 2. Methodology
 - SelfGraphVQA
 - Similarity Loss

Results
 GQA Results
 Ablation

 Conclusion
 Contributions
 Future Works

Method	Binary (↑)	Open (†)	Consist. (†)	Validity (↑)	Plausab. (†)) Distr. (↓)	Acc (†)
Baseline	65.8	29.7	58.2	94.9	90.5	11.7	50.1
Baseline+BERT	68.0	32.2	62.6	95.0	90.9	7.7	53.8
Local	66.8	30.2	59.4	94.9	90.6	8.8	51.5
Global	67.7	30.8	62.5	94.9	90.6	6.7	52.3
SelfSim	68.4	31.3	65.9	94.9	90.7	2.1	54.0
Global+BERT	68.0	33.0	63.9	95.0	91.2	8.9	54.5
SelfSim+BERT	68.2	32.8	64.3	95.0	91.0	8.0	54.5

Accuracy on different question types



Experimental Design: unfavorable perturbation study by augmenting images based on question types.

Greater drop, better outcome.

Question Type	Augmentation	Baseline	Global	Local	SelfSim
Relation	Flip	-1.6	-3.4	-3.2	-3.9
Attribute	Strong Color Jitter	+1.14	-3.7	-0.8	-1.2
Global	Gaussian Noise + Crop	-5.6	-7.7	-5.5	-8.1

Experimental Design: contrasted our approach with the baseline exclusively relying on data augmentation for training.

Evidence that data augmentation detrimentally affects the overall performance.

Method	Binary	Open	Validity	Plausibility	Acc
Baseline Aug	65.1	28.7	94.6	90.1	50.1
SelfSim	68.4	31.3	94.9	90.7	54.0

Hypothesis: State-of-the-art models might exploit question and answer distribution bias, leading to "clever guesses"⁵

Experimental Design: slightly perturbing node features with random noise in both the scene graph and questions.

Setup		Methods		
Scene Graph + Question	Baseline	Local	Global	SelfSim
SG + Noise	16.2	16.6	28.6	26.6
Noise + Question	39.9	38.3	37.4	39.8
Noise + Noise	12.7	14.6	18.9	21.0
Scene Graph + Question	BERT Baseline	BERTGlobal+link	BERTSelfSim+link	
SG + Noise	21.0	23.2	24.5	
Noise + Question	42.4	41.8	42.8	
Noise + Noise	19.8	21.7	21.3	

⁵Agrawal et al., "Don't just assume; look and answer: Overcoming priors for visual question answering." CVPR, 2018. Yuan et al., "Language bias in visual question answering: A survey and taxonomy." arXiv:2111.08531.

- 1. Introduction
 - Visual Question Answering
 - Motivation
- 2. Methodology
 - SelfGraphVQA
 - Similarity Loss

- 3. Results GQA Results Ablation
- 4. Conclusion Contributions Future Works

- Impact of Scene Graph Quality
- Practical SG model for VQA task
- Effective Similarity Maximization
- Consistent Visual Enhancement

- Extend for more datasets such as VQAv2 and VizWiz
- Investigation of Alternative Scene Graph Generator Models
- Enhancement of Encoder Architecture
- Advancement of Self-Supervised Energy-based Approaches

Thank you!