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Abstract—Crowd counting is a challenging task that aims
to compute the number of people present in a single image.
The problem has a significant impact on various applications,
for instance, urban planning, forensic science, surveillance and
security, among others. In this work, we propose and evaluate
a Multi-Stream Convolutional Neural Network that receives an
image as input, generates a density map as output that represents
the spatial distribution of people in an end-to-end fashion, then
we estimate the number of people in the image from the density
map. The network architecture employs receptive fields with
different size filters for each stream in order to deal with
extremely unconstrained scale and perspective changes, which are
complex issues in the crowd counting context. Although simple,
the proposed architecture achieves effective results on the two
challenging UCF_CC_50 and ShanghaiTech datasets.

I. INTRODUCTION

A rush-hour stampede at a railway station in Mumbai, India,
left more than 20 people dead and dozens more injured in
September 2017. This and other similar tragedies could be
prevented or their consequences reduced through monitoring
systems capable of measuring the quantity of people in public
places.

The problem of crowd counting aims to estimate the amount
of people present in high density scenes. Crowd counting has
applications in several domains, such as forensic search, city
planning, virtual environments, safety monitoring, and disaster
management [1], [2], [3], [4], [5]. The techniques can also be
applied to other tasks, such as counting cells or bacteria in
microscopic images [6], [7].

Figure 1 illustrates examples of scenarios for crowd count-
ing. Perspective changes are a critical issue in the crowd
counting context since they create different shapes of people.
In some cases, people can be seen as points, while in others,
deformability of human body gains importance. Occlusion is
another issue and classical pedestrian detection methods are
not feasible. Furthermore, illumination variation can create
small differences between background and crowd. These fac-
tors make crowd counting a challenging task.
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Figure 1: Image samples for crowd counting from the
UCF_CC_50 dataset. The unconstrained scenarios (different
settings of the cameras, scaling, view points, etc.) make the
task challenging.

A common approach to addressing the crowd counting prob-
lem is to generate a density map that models the probability
distribution of people heads present in the images. Then,
the head count is estimated by calculating the accumulated
distribution of the density map. Our method has similarities
with the approach developed by Zhang et al. [8], where a
Convolutional Neural Network (CNN) with multiple streams
was used to combine filters with receptive fields of different
sizes to be invariant to dramatic scale changes that usually
exist in crowd counting. However, our network consists of
more streams to handle several scale changes, our definition
of density map is simpler yet more effective, we do not need
a complex training process for each stream individually, and
a hard negative mining process is introduced for an effective
data augmentation scheme. In addition to these contributions,
we conducted extensive experiments on two challenging image
sets, UCF_CC_50 and ShanghaiTech dataset, achieving
competitive results.

The remainder of the paper is organized as follows. Sec-
tion II briefly describes related work on estimating crowd
density. Section III introduces the details of our work. We
describe the experiments and results in Section IV. Finally,
we conclude with some final remarks and future work in
Section V.
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Figure 2: Fixed Gaussian kernel for density map construction.
Each head position is converted into a Gaussian distribution
(overlapped distributions are summed).

II. RELATED WORK

Although several methods for crowd counting [3], [9], [10]
have been developed over the last years, it remains an open
problem. Early approaches focused only on determining the
total amount of people in the scene. Recently, the use of
density maps has gain popularity [3]. A density map is an
intuitive representation of the spatial distribution of people
in an image, and it is more usable for real life applications,
such as security, since it gives a notion of the people spatial
distribution (as shown on the left of Figure 2).

Previous approaches used to count directly the heads on
the image, by detecting them. For instance, Idrees et al. [10]
proposed to obtain a head count by mixing several features.
They used a combination of handcrafted fractured Fourier
analysis, Histogram-of-Oriented-Gradient based head detec-
tion, and interest-points based counting, and post-processed
the resulting features with multi-scale Markov Random Field.
However, handcrafted features often suffer a drop in accuracy
when subject to perspective distortion, severe occlusion and
variation in illumination.

To overcome the limitations of handcrafted methods, recent
research focuses on creating neural networks that estimate
the body parts. Boominathan et al. [11] proposed a deep
learning framework, where they combined deep and shallow
fully convolutional networks to predict a density map. Such
combination was used to capture both high-level semantic
(face and body detectors) information and low-level fractures
(blob detectors). Furthermore, to deal with the small amount
of data, they used a multi-scale data augmentation technique.
However, they did not supervise the type of images generated
with their technique (for instance, images without or very few
people).

Onoro et al. [12] proposed two neural networks, named
Counting CNN (CCNN), and Hydra CNN (HCNN). The
CCNN was the first network formulated as a regression model.
It learns a mapping between the appearance of the image
patches to their corresponding object density maps. However,
the scale is still a major issue. Thus, the HCNN learns a

multi-scale non-linear regression model that uses a pyramid of
image patches extracted at multiple scales to perform the final
density prediction. However, similar to the work developed
by Boominathan et al. [11], they did not supervise the type of
images generated through the data augmentation technique.

Walach et al. [13] proposed a general method for object
counting based on density maps using CNNs with layered
boosting and selective sampling. An important aspect of
their method is the improvement in training time based on
thresholding the samples used for training. Our work uses a
similar idea, however, we focus on the number of people for
the threshold.

Sam et al. [5] used switching CNN architectures that employ
patches from a grid within a crowd scene to create independent
CNN regressors based on a switch classifier. Each independent
CNN regressor is chosen with different receptive fields and
field-of-view as a multi-stream network in order to be invariant
to scale changes. Similar to the work by Zhang et al. [8], the
ground truth was generated with adaptive Gaussian kernels.
In our work, we use a simpler, yet more effective, kernel for
creating the density maps.

Sindagi et al. [14] proposed an end-to-end network that aims
to learn two related tasks, crowd count classification and den-
sity map estimation in a cascaded fashion. In the training stage,
they augmented data by creating patches without supervising
the number of people in the images. In our work, we instead
consider a minimum number of people per patch.

III. PROPOSED CROWD COUNTING METHOD

We propose a neural network to estimate a density map of
the head locations in a crowd for a given image. Our model
learns several kernels to identify head positions at different
scales. Then, we fuse the responses of scale-aware detectors
to estimate the density of each detection. We train our model
by minimizing the deviation of a true density of the given
image.

Since we train the network in an end-to-end fashion, we
need to create the ground truth estimates. First, we present
the process to estimate this true density from the impulse
responses of annotated images. Then, we present our Multi-
Stream Convolutional Neural Network (MC-CNN) that esti-
mates its density map given an input image. Finally, we detail
our training and data augmentation process.

A. Density Map Construction

Crowd counting datasets provide images and positions (usu-
ally located in the heads) of each person. Based on these labels,
we create a density map since it has been demonstrated [5],
[8], [12], [13], [14] that such representation is simple, yet
effective to predict the number of people present in the scenes.
The purpose of the density maps is to describe the density
distribution of people in a given image (Figure 2).



Figure 3: Proposed multi-stream neural network for crowd counting, where each stream (set of layers at a particular scale)
aims to learn head detectors at a certain scale. The detection results are fused and converted into a density map that represents
the probability of a head for that pixel.

Following the work by Zhang et al. [8], if a person is located
at pixel xi, then an image labeled with y heads is represented
through the accumulation of y impulse functions, such as

H(x) =

y∑
i=1

δ(x− xi), (1)

where the δ(·) function is defined as

δ(x− a) =

{
1 if x = a,

0 otherwise.
(2)

To convert such image to a continuous domain, we convolve
it with a Gaussian kernel (with standard deviation σ)

F (x) = H(x) ∗Gσ(x). (3)

Originally, Zhang et al. [8] proposed to use a geometry-
dependent parameter σi for each person’s Gaussian kernel.
This parameter σi was defined by the mean distance d

i
to

the k closest persons and a regularization parameter β. Then,
the density map was defined in the same fashion (3) with
σ = σi = βd

i
.

We changed this idea and used a fixed kernel with a single
σ = 4. This simplification proves to obtain better results, as
shown in Section IV. Since we are creating fixed responses at
different scales, our model needs to only predict heads, and
then just estimate their distributions, instead of predicting their
scale as well.

Finally, the predicted number of people in a density map is
computed as

y′ =
∑
x

F (x). (4)

We use these density maps as ground truth for training our
MC-CNN.

B. Multi-Stream Convolutional Neural Network

As mentioned previously, crowd counting is subject to
unconstrained perspective changes. Thus, images typically
contain people at different scales. Classic deep learning ap-
proaches using filters with receptive fields of uniform size suf-
fer from capturing features at different scales. Consequently,
a multi-stream convolutional neural network is an intuitive
solution since it can learn features to predict heads and,
consequently, their distributions at multiple scales.

Inspired by the work of Zhang et al. [8], we propose a
convolutional neural network that learns head detectors at four
different scales and that converts the fused detection results
into a density map, as illustrated in Figure 3.

The architecture contains four parallel CNNs (streams)
with different sizes of filters which are joined to predict
the final density map of the people. Each stream has the
same network structure (i.e., convolution-pooling-convolution-
pooling), however, with different size and number of filters.
Max pooling is applied to each 2×2 region, whereas rectified
linear unit (ReLU) is used as the activation function.



The size of filters is smaller for the streams with more
channels. This technique is adopted to reduce the number of
parameters to be optimized. The final output (density map) is
obtained through 1×1 filters to combine the responses of each
stream for a determined pixel, and to further convert it into
its probability. It is worth observing that the architecture can
handle images of any dimension, which is useful to validate
the method.

To train the network, we find the optimal parameters θ∗ (for
the network) that minimize the error between the estimated and
ground truth density through

θ∗ = arg min
θ

L(θ), (5)

where the loss function is

L(θ) =
1

2N

N∑
i=1

∥∥F(Xi; θ)− Fi
∥∥2
2
, (6)

where F is the function approximated through our network,
θ is a set of learnable parameters in the multi-stream neural
network, Xi is the i-th input image and Fi its ground truth
density map (3), N is the number of training images, and ‖·‖2
is the Euclidean distance (although any other `2 norm can be
used).

C. Training and Data Augmentation

The loss function (6) is optimized via back-propagation and
batch-based stochastic gradient descent. Differently from the
work described by Zhang et al. [8], we do not train each stream
independently. Due to the two pooling layers, the size of the
output is a quarter of the original size, then we resize the
ground truth images in order to compare them with the output.

In order to train both datasets, we use the following pa-
rameter configuration: 2000 epochs, learning rate of 0.00001,
momentum of 0.9, and batch size of 500 images.

Since the availability of data for training is small, we
consider an effective data augmentation step. Although it is
similar to other existing approaches, we add a hard negative
mining that improves the final results.

We perform an extensive data augmentation of the training
dataset by creating images with a sliding window of 200×300
pixels and a displacement of 10 pixels in each iteration, such
that the number of people in the image is larger than a
threshold t. After applying this data augmentation technique,
the size of training set is increased from 3 to 37 times,
depending on the evaluated dataset.

In our experiments, we consider t = 200 and t = 0 for
UCF_CC_50 dataset and ShanghaiTech dataset, respec-
tively. Such decision is due to the characteristics present in
the datasets: the average number of people in the UCF_CC_50
dataset is greater than in ShanghaiTech dataset. Therefore,
the network learns to count larger crowds with higher values
of t and, analogously, smaller crowds with lower values of t.

IV. RESULTS

In order to evaluate the performance of the proposed
crowd counting method, we compute the Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE) metrics,
defined respectively as

MAE =
1

N

N∑
i=1

|yi − y′i|, (7)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − y′i)2, (8)

where N is number of test samples, yi is the ground truth
count, and y′i is the estimated count corresponding to the i-
th sample. Note that previous works [8] denote RMSE (8) as
Mean Squared Error (MSE), instead.

We conduct experiments on the UCF_CC_50 and
ShanghaiTech datasets to demonstrate the effectiveness
of our method. Results are compared to state-of-the-art
approaches and baselines of the proposed datasets.

A. UCF_CC_50 Experiment

The UCF_CC_50 dataset is an extremely challenging
dataset introduced by Idrees et al. [10]. It contains 50 images
of different resolutions and aspect ratios extracted from the
Internet, where the number of people varies from 94 to 4543.
Following the original standard protocol, we show the results
using a 5-fold cross-validation.

As shown in the comparative results of Table I, our method
achieves state-of-the-art results in terms of MAE, but not in
RMSE. By analyzing each fold prediction, we found that our
method has difficulty in dealing with a specific case where
the ground truth has over 4000 people, as it predicts a count
below 3000. This result is due to the size of the kernel that
incorporates several heads within a single region. Thus, the
method does not count overlapping people as different persons,
i.e., two close persons are considered one due to kernel size.

Despite the incorrect estimation in such situations, our
method is capable of reaching an assertive prediction of
people. An example is illustrated in Figure 4, where there
is a mislabeled ground truth image, but the proposed network
finds the heads that are not labeled. This demonstrates the
capability of the proposed method and the complexity of the
problem, since the precise interpretation of crowed scenes is
challenging even for human beings.

Qualitative results of the proposed method on this dataset
are shown in the first three rows of Figure 5. The overlay
on the figures shows the accuracy of the proposed method. A
failure case is shown in the third row of the figure, where the
method has trouble in detecting the blurred heads.

B. ShanghaiTech Experiment

ShanghaiTech dataset was introduced by Zhan et al. [8]
and it is among the largest ones in terms of labeled people,
with 330 164 annotated heads. The dataset was created to
boost the research in crowd counting using deep learning
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Figure 4: Comparison of density map results. The proposed network is capable of handling ground truth labeling error (top
part of the images) in UCF_CC_50 dataset.

Table I: Comparison of several method results for
UCF_CC_50 dataset.

Method MAE RMSE

Idrees et al. [10] 419.5 541.6
Zhang et al. [8] 355.6 487.1
Boominathan et al. [11] — 452.0
Onoro et al. [12] 333.7 425.2
Walach et al. [13] 364.4 341.4
Switching-CNN [5] 318.1 439.2
Cascaded-MTL [14] 322.8 341.4
CP-CNN [15] 295.8 320.9
Proposed 295.0 443.7

Table II: Comparison of several method results for
ShanghaiTech dataset.

Part A Part B

Method MAE RMSE MAE RMSE

Zhang et al. [8] 110.2 173.2 26.4 41.3
Cascaded-MTL [14] 101.3 152.4 20.0 31.1
Switching-CNN [5] 90.4 135.0 21.6 33.4
CP-CNN [15] 73.6 106.4 20.1 30.1
Proposed 96.1 150.5 17.8 27.7

approaches. It is divided into two parts. Part A is composed
of 482 images randomly taken from the Internet, which have
different sizes and contain between 501 and 3139 people.
Part B is composed of 716 images taken from a busy street of
the metropolitan area of Shanghai, containing between 123 and
578 people. The crowd density varies significantly between
the two subsets, making an accurate crowd estimation more
challenging than other datasets. Both parts have predefined
training and testing sets: Part A has 300 images for training
and the remaining for testing, whereas Part B has 400 images
for training and 316 for testing.

For Part A, our results are superior than those obtained
by Zhang et al. [8] and Cascaded-MTL [14]. Our net-
work architecture, data augmentation scheme, and density
map definition were crucial to improve the results. On the
other hand, Switching-CNN [5] and CP-CNN [15] use much
more complex architectures and can handle the challenging

ShanghaiTech dataset. For Part B, our method achieves state-
of-the-art. Although the number of people present in Part B is
smaller than in Part A, the network estimated the distribution
of people accurately, as shown in Figure 5.

V. CONCLUSIONS AND FUTURE WORK

In this work, we extended the architecture proposed by
Zhang et al. [8] for crowd counting, as well as incorporated
an effective density map construction and a data augmentation
scheme. Our method was able to achieve state-of-the-art results
on the UCF_CC_50 dataset for MAE metric, competitive
results on ShanghaiTech-part A and state-of-the-art in
ShanghaiTech-part B datasets.

As directions for future work, we intend to evaluate methods
that automatically set the best size for the receptive fields of
layer filters. Moreover, we plan to evaluate the creation of
synthetic data for training purpose.
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