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Abstract—Automatic understanding of videos is one of the
complex problems in machine learning and computer vision. An
important area in the field of video analysis is human action
recognition (HAR). Though a large number of HAR systems have
already been developed, there is plenty of daily life actions that
are difficult to recognize, due to several reasons, such as recording
on different devices, poor video quality and similarities among
actions. Development in the field of deep learning, especially
in convolutional neural networks (CNN), has provided us with
methods that are well-suited for the tasks of image and video
recognition. This work implements a CNN-based hierarchical
recognition approach to recognize 20 most difficult-to-recognize
actions from the Kinetics dataset. Experimental results have
shown that the application of our method significantly improves
the quality of recognition for these actions.

Index Terms—action recognition, neural networks.

I. INTRODUCTION

Today, human action recognition (HAR) in video data is
one of the important problems of computer vision [1]. The
goal of HAR is to define and classify human actions in
videos. Development of this technology has a number of useful
applications. For example, airports, metro stations, and other
public places require constant monitoring. In such places, a
large number of video cameras are installed, covering almost
every section of the terrain to constantly monitor the occur-
rence of abnormal situations. To achieve this, it is necessary
to distinguish suspicious actions from ordinary ones. Other
applications may include the use of HAR methods to monitor
and assess the situation in real time in medical institutions,
construction sites, child care, etc. [2].

A large number of HAR systems have been developed in
the past to recognize different types of actions in videos.
These include both simple actions (such as walking, running,
jumping) [3], as well as complex actions that may involve
interaction among a large number of people and objects [4].
These systems are mainly built using machine learning meth-
ods, such as artificial neural networks [5]. To train such
systems, so that they can recognize actions in video clips
of different quality and content, we need big video datasets.
Popular human action datasets containing a large number of
different videos are UCF101 [6], HMDB [7], ActivityNet [8],
and Kinetics [1].

In the general case, training a HAR system consists of
getting a set of frames from a specific clip, combining these

frames in a sequence, extracting features from them, and
submitting them as input to a classifier [9]. During training,
we know exactly what action was submitted to the classifier,
so we can make adjustments every time the classifier is wrong,
thereby increasing the likelihood of getting a correct answer
in the future.

Despite the large body of existing HAR methods, the num-
ber of actions that can be recognized with good accuracy by
these methods is limited. Attempts to increase the number of
recognizable actions by modern systems failed due to various
constraints. These include poor-quality of video clips, cluttered
background, noise, and the problem of similarity of various
actions [10]. For instance, it is often quite difficult to draw a
line between playing basketball and shooting basketball.

The Kinetics dataset consists of 400 actions. Earlier at-
tempts [1] to use this data to build HAR methods were unable
to achieve high recognition rate for all of these actions. The 20
most difficult-to-recognize actions from this dataset are shown
in Table I. One possible reason for the low recognition rates
is the use of a single model to recognize all actions [1]. Such
complex learning problems can be solved better using hier-
archical systems. Dividing the model into modules creates a
more flexible one by using existing machine learning methods
to improved HAR, even for the difficult actions.

Improving the recognition of the 20 worst actions, reported
by Kay et al. [1], is important because it refers to the problem
of scaling the recognizable actions as a whole. Particularly,
it is challenging due to the similarity of these actions. Our
interest is the development of a flexible model that allows us
to improve the quality of recognition of actions easily.

Therefore, the main idea of our work is to develop a
hierarchical classification model capable of improving the
quality of recognition of the 20 most difficult-to-recognize
actions from the Kinetics dataset. The hierarchical scheme
makes it possible to train separate models for each group of
actions, which results in each network learning a feature space
well-suited for the corresponding group of actions, instead of
learning and using the same set of features for all actions.

Existing methods for classifying actions in HAR use dif-
ferent types of artificial neural networks. The disadvantage of
these approaches is the use of a single model for recognition.
A single model that handle different and independent types of
activities related to different groups (such as cooking, drink-



Table I
TWENTY MOST CHALLENGING ACTIONS FROM THE KINETICS

DATASET [1] AND THEIR CORRESPONDING GROUPS USED IN THIS WORK.

Group Actions

Sport Throwing ball
Shooting basketball

Communication Answering questions
Recording music

Fails Headbutting
Faceplanting

Makeupping Fixing hair

Hands action Tossing coin
Shaking hands
Rock scissors paper
Slapping

Cooking Making cake

Eating Eating chips
Eating doughnuts

Drinking Drinking
Drinking beer
Drinking shots

Other Sniffing
Yawling
Sneezing

ing, etc.) has problems encoding this information. Often the
extracted features for an action can be similar to features from
other actions. Instead, the proposed hierarchical classification
method simplifies the complexity of one model by dividing
the responsibility of encoding and recognition into a set of
neural networks. In this way each network is responsible only
for one group of actions.

Our method contains two steps. The first stage performs the
classification of the input video into a group of activities. The
second level classification network, selected by the output of
the previous step, re-processes the video and determines the
specific action. As for the type of the neural network, we
used 3D convolutional (conv3D) neural networks, since they
can handle well the spatio-temporal data, such as videos. The
classifier on the top level predicts the action groups, that are
used to condition the next layer of classifiers to produce the
final action. An overview of the proposed method is shown
in Fig. 1. The hierarchical classification model was tested
on Kinetics [1] dataset, and the results we obtained show an
advantage over existing solutions.

II. RELATED WORK

The general pipeline of action recognitions is as follows.
The first step is to form a dataset containing as many different
videos as possible on different types of actions. The data
must be structured to allow for efficient computation [11].
After the dataset is formed or selected, it is necessary to
determine whether any preprocessing of the video will be
required. For some tasks, video preprocessing may not be
needed, but it is often better to clean the video of noise and
unnecessary data [12]. Features are extracted [13]–[15], and,
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Figure 1. General framework of the proposed method. The video data is
processed to extract the high level action group through a high level classifier,
C. Then, another classifier, Cg , conditioned on the predicted group, g, is used
to predict the final action. (The bold path shows a possible outcome when
C(x) = g = 2 for the video input x.)

in some cases, there is a feature selection step to achieve
dimensionality reduction [16]. The final stage of the pipeline
is classification [17]. A large number of action datasets have
emerged over the last few years. Among them Weizmann [18],
ASLAN [19], KTH [11], [20], UCF Sports [21], UCF-
Youthes [22], Hollywood [23], [24], HMDB51 dataset [25],
and Kinetics [1] are the most common. The latter contains
400 different types of actions, which is almost twice as many
as its predecessors. This dataset is the focus of our work due
to its challenging classes.

Various algorithms can be applied to the input video clip
for feature extraction. For example, Dense Sampling Meth-
ods [26], Sparse Sampling Methods [27]–[30], histogram of
oriented gradients (HOG) [31], [32], HOG3D [33], and optical
flow [14], [15]. Some works have also used Convolutional
Neural Network (CNN) based descriptors [13], [34]–[36].

As for feature selection, various approaches have been used
that aim at reducing the dimensionality [37], [38]. The most
commonly used feature selection methods include Principal
Component Analysis, Stepwise Linear Discriminant Analy-
sis [39] and Genetic Algorithms [40], etc. Overall, feature se-
lection methods are divided into the following categories [16]:

• Filter methods, which select features based on a perfor-
mance measure regardless of the employed data modeling
algorithm.

• Wrapper methods, which consider feature subsets by the
quality of the performance on a modeling algorithm,
which is taken as a black box evaluator.

• Embedded and hybrid methods, which perform feature
selection during the execution of the algorithm.

There exist several methods that have used Kinetics dataset
for HAR. Carreira and Zisserman [41] proposed the I3D
method based on a two stream network (optical-flow and
raw-data based). The work did not refer to the assessment
of the difficult-to-identify actions of the dataset [1]. Rather,
they tested the I3D method on the entire Kinetics dataset and
reported average recognition rates.

Sparsely Labeled for Action Classification (SLAC) [42]
method was developed using Kinetics dataset to automatically



place labels in a video indicating a range containing a human
action. The SLAC approach reduces the number of human
actions by automatically identifying clips that contain coordi-
nated actions. This method claims to improve the accuracy of
HAR based on Kinetics dataset, but the authors did not show
the accuracy of recognition for the 20 actions from Table I.

Another Kinetics-based work is Temporal 3D ConvNet
(T3D) [43], which proposes to create another time layer in
CNN. The results of the experiments show results exceeding
the existing classification methods by several percent. How-
ever, there are no experiments indicating an improvement in
the accuracy of recognition of the similar actions.

One of the closest works [44] to ours, in which the authors
showed improvements in the quality of recognition of 9
actions from Table I, implements and tests an Appearance-
and-Relation Network (ARTNet). The method was tested on
Kinetics [1], UCF101 [4], and HMDB51 [13] datasets. For
UCF101 and HMDB51, their results were much better than
previous methods. However, in the case of Kinetics dataset
the method showed 20% worse results than C3D [45], and
I3D [41].

Considerable efforts were concentrated around the appli-
cation of recurrent neural networks (RNN) to improve the
accuracy of the HAR on video. However, Long et al. [46]
implement the Attention Clusters (AC) approach based on
the studies of local feature integration which showed results
superior to the use of RNN. The authors showed the compet-
itiveness of the AC algorithm with existing action classifiers,
but did not show the accuracies on the similar actions too.

To conclude, nowadays, Kinetics is one of the most popular
and widely used action dataset containing a large number of
different types of actions. None of other works that have used
this dataset [47]–[59] have focused on evaluating the impact
of similar actions on the overall classification accuracy. More
importantly, there is no effort on improving the recognition
accuracy of these hard-to-classify actions, as reported in the
original dataset [1]. The method of hierarchical classification
for HAR, developed in this work, would make possible to
use Kinetics dataset more favorably by reducing the time
for retraining the networks and increasing the accuracy of
recognition for the similar actions.

III. HIERARCHICAL CLASSIFICATION

Based on experience from previous works, we propose a
model that improves the limitations of previous solutions. For
different types of actions, different features may be better
suited. Therefore, unlike existing works, which used a single
type of features for all considered types of actions, we propose
a hierarchical model; a two-level structure for recognizing
actions. The overview of the method is shown in Fig 1. First
the video is fed to the model trained to recognize a global
action group or class. Once the group has been recognized, the
video is transferred to the next node that launches the model to
recognize the actions inside the global class. Since the videos
are of different length, we extract frames to normalize them,
see Section IV-A for the details.

Due to the success of other methods on the standard
databases, we decided to improve the classification of the 20
most difficult actions from the Kinetics datasets [1] (as shown
in Table I). The main difficulty of these classes arises from
their similarity, that can be challenging even for humans.

To tackle the similarity problem, we propose to use a
two layer classifier (although more layers could be used) to
determine a super class of the actions, and then use a set
of specialized classifiers to obtain a finer classification label.
Thus, given the set of classes to classify, A, there is a partition
P over all the actions, such that ∪A∈PA = A and Ai∩Aj = ∅
for all Ai, Aj ∈ P , and let x be a video with action class
a ∈ A. We intend to learn a function

C(x) = g, (1)

i.e., the action group classifier (at top level), such that it returns
the group index, g, that represents a subset Ag ∈ P , that
contains x’s action, a ∈ Ag . Simultaneously, we intend to
learn a set of classifiers

C = {Cg(x) : 1 ≤ g ≤ |P |} , (2)

such that Cg classifies the actions on the partition Ag . Hence,
we perform the classification of x by finding the optimal g∗ =
C(x) as the result of the high level classifier (1), and then using
it to select the low level classifier (2), Cg∗ , that will be used
to produce the final action.

We propose a neural network architecture (shown in Fig. 2)
to approximate these classifiers. The architecture comprises
Conv3D layers alternated with max polling 3D layers. As an
activation function on the Conv3D layers, we used rectified
linear units. The last layer is a softmax layer that performs the
classification and its size is equal to the number of respective
classes (that is, number of groups, |P |, and classes within each
group, g, for each level, |Ag|, respectively).

In our network architecture, a 3D kernel with a size of
3×3×3 is used, the efficiency of this kernel was experi-
mentally proved by Tran et al. [45]. Similarly, Tran et al.
verified that 3D ConvNet performs consistently better than 2D
ConvNets on a large-scale internal dataset, namely I380K [45].
The rest of the network parameters (shown in Fig. 2) were also
obtained from the studied literature presented in the related
work as well as calibrated to solve our particular problem in
the initial experiments.

We use the same network architecture at both levels of the
hierarchical system. The same architecture is general enough
to tackle the action group (high level) and action (low level)
recognition. However, since we are training several instances
of the network each one will learn different features, tuned for
their particular partition.

IV. EXPERIMENTS AND RESULTS

A. Setup

We conducted experiments on the 20 actions from the
Kinetics dataset [1], since these actions had the lowest reported
accuracy [60]. By accuracy we mean the probability that a
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Figure 2. The neural network architecture for action recognition. It has 8 convolution layers of 3×3×3 with 1 stride in both spatial and temporal dimensions,
5 max-pooling layers of 2×2×2, except the first pool which is 1×2×2), and 2 fully connected layers which are have 4096 output units, the last is softmax
layer is output layer.

video containing an action that is submitted will be defined
by the system as the correct action. Kinetics dataset was split
in the ratio of 70% of the video to train, 20% of the video
for validation and 10% of the video for the tests. The results
displayed in the table II reflect the fact that the detected
action will be determined by the system with an accuracy for
example: recognizing the recording mucis system to determine
with a probability of 34% that this recording music and 66%
will be distributed among the remaining actions.

After we have partitioned the dataset into parts, we ran a
script that separates each video into a sequence of frames.
Firstly, we have a dataset consisting of video clips with
duration of 10 seconds or less, depending on the length of the
initial video. The original video on YouTube can be of any
length; from a few hours to a few seconds. Kinetics dataset
contains information about the range within which the target
action is located. In accordance with this, video is cut from
the YouTube video to get a short video containing only the
desired action.

We used ffmpeg [61] to cut the video into frames. We
can specify the required number of frames that we want to get
from the video clip. The number of frames from the video are
sampled regularly given a rate. Since Kinetics contains videos
of different lengths, as a result of the frame generation step,
a different number of frames is obtained for different videos.
It is worth noting that most of the videos have a duration of
10 seconds.

In our experiments, we chose 10 second videos, and tested
for 20, 40, 60, 80, and 100 as the number of frames. The aim
was to determine the optimal number of frames to obtain the
best recognition results, which turned out to be 60. Increasing
the number of frames greatly slows the learning process,
although it can possibly improve the quality of network
learning and, as a consequence, the accuracy of the action
recognition system. We used the recognition accuracy as the
evaluation metric, as was done in the existing works [36].

As for the libraries, we used tensorflow [62] and keras [63]
to construct, train, and test the networks. We used the Adam
optimizer with learning rate 1×10−4, batchsize of 32, initial
learning rate of 0.004, and 50 epochs for training. As for the
hardware, we used a computer equipped with Intel R© CoreTM

Table II
EXPERIMENT’S RESULTS AVERAGE ACCURACY (%).

Experiment Avg. Recog. (%)

Baseline scores [1] 14.0
1st exp. 6.5
2nd exp. with optical flow 4.4
3rd exp. hierarchical classification approach 36.0
4th exp. hierarchical classification with optical flow 34.7

i7-7700K CPU @ 4.20GHz, and GPU-GeeForce 1080ti with
8GB of video memory.

B. Experiments

We do not use preprocessing in this work. For feature
extraction, we tested optical flow approach Table II, but did
not get a good accuracy. We then tried feature learning and
came to the conclusion that feature learning is better that using
hand-crafted features. Our findings are consistent with that of a
study done by Antipov et al. [64], where they compared these
two types of features. The study showed that hand-crafted
and learned features perform equally well on small-sized
homogeneous datasets. However, learned features significantly
outperform hand-crafted ones in the case of heterogeneous and
unfamiliar (unseen) datasets.

Hence, to fully evaluate our method, we performed four
experiments by varying the type of feature with and without
our proposed hierarchical system.

In the first experiment, we evaluated a single model that
recognizes the 20 actions (that is the partition P = {A}).
We used the training and validation data to select the optimal
parameters (as described in Section IV-A). Table II shows
the average accuracy of recognizing the chosen 20 actions
from the Kinetics dataset. The average recognition accuracy
was 6.5%, which is less than half of the baseline accuracy
as reported in the database’s proposal [1]. The difference in
results is due to the simplicity of our model in this experiment
in contrast to the one used in the baseline [1]. In that work, the
authors used a two-stream approach that combines the results
of two networks: one working with pre-processed video by the
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Figure 3. Recognition accuracy of each action in our four experiments.

optical flow algorithm, and a convolutional three-dimensional
network working with conventional video.

In the second experiment, we tried to improve the accuracy
of this single model by training with optical flow instead of
raw data. The average recognition accuracy for all 20 actions
with optical flow decreased by 2.1% (as shown in Table II).
Although the average recognition accuracy is lower compared
with the previous experiment, when examining Fig. 3, we can
see that the use of optical flow resulted in a better accuracy for
some actions, such as fixing hair and sniffing. With raw data as
input, these actions were recognized with an accuracy of less
than 5%, but with optical flow, it was over 15%. However,
using the optical flow significantly lowered the recognition
accuracy of shooting basketball, sneezing and others. Perhaps,
this is the reason that the original work [1] used a two-stream
approach: some actions are better recognized using raw video
as input; whereas for others recognition works better when
optical flow is used.

In the third experiment, we evaluated the performance of
the proposed hierarchical recognition model. For both first
and second levels, the same architecture of the Conv3d model
used in the first experiment was used. The purpose of this
experiment was to determine whether a hierarchical approach
to action recognition would increase the accuracy. The results
show an increase in accuracy by six times (cf. Table II and
Fig. 3). This demonstrates that the approach is well-suited for
recognizing difficult actions, better than the existing work. To
determine each action on the lower level, there is a separate
conv3D network such that it is trained to recognize only the
actions of its subgroup (see Table I). This division of work
greatly simplifies the network training, as it does not take
into account actions from other groups. At the first level,
there is also conv3D, which is not concerned with individual
actions, but deals only with the definition of global classes.
The division of recognition tasks into two levels simplifies
the training of each network, which increases the average
recognition accuracy. It is worth noting that the experiment

was conducted not on the entire volume of video for each
action and training took 50 epochs. Based on the accuracy and
loss destruction graphs, it can be judged that the continuation
of training on a larger number of epochs will give a result
much higher than that presented in this paper. However, it
was stopped due to hardware constraints.

In the fourth experiment, we tested the use of optical flow in
the proposed hierarchical recognition model. The results of the
experiment did not show a significant increase in recognition
accuracy. The results of this experiment are only slightly
different from the previous experiment. Figure 3 shows that for
many actions the results are similar. Hence, we conclude that
the application of the two-stream approach to further improve
the system might not give significant improvement. It makes
more sense to train the model from the previous experiment
with a larger number of frames.

As reported earlier, [44] claimed to improve the accuracy
for 9 out of the 20 most difficult actions. These include
slapping, throwing ball, shaking hands, headbutting, fixing
hair, sniffing, drinking, faceplanting, and rock-scissors-paper.
The average accuracy of recognition of these actions [44]
was 24.1%, which is worse in comparison with the results
obtained using our hierarchical classification method, as shown
in Table II.

V. CONCLUSION

In this work we addressed the problem of learning difficult-
to-recognize actions due to large similarities among them.
We proposed and tested a hierarchical two-level system for
recognition. Moreover, our model allows to train the system on
new actions without changing the whole model, by training on
separate classifiers. For instance, we could train on the whole
400 classes on the dataset by creating the low level classifiers
one time. Then, the high level layers could be tunned according
to the recognition rates on different partitions. However, due
to our limitations on hardware, we could not fully test this
hypothesis due to the costly requirements in resources.



The ability to add new activities flexibly creates the need for
new datasets containing more data. In our opinion, Kinetics
dataset [1] has potential for its expansion due to the popularity
of YouTube. Our results are better than existing solutions and
this can be a new starting point for the further development of
systems working with recognition of actions in a hierarchical
way.
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